1061-2nd Chem Exam-1061206(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) An FM radio station radiation is	broadcasts electromagn m.	etic radiation at a frequ	iency of 100.6 MHz. The	wavelength of this
A) 3.018 × 10 ¹⁰	B) 2.982 × 10 ⁶	C) 2.982	D) 3.018 × 10 ¹⁶	E) 0.3353
Answer: C				
2) It takes 261 kJ/mol to that can be used to ej	eject electrons from a c ect electrons from the si	ertain metal surface. W urface of this metal via	hat is the longest wavelotted the photoelectric effect?	ength of light (nm)
A) 165	B) 552	C) 233	D) 458	E) 725
Answer: D				
 Of the following tran highest-energy photo 	sitions in the Bohr hydr on.	rogen atom, the	transition results in	the emission of the
A) n = 1 →n = 6	B) n = 3 →n = 6	C) n = 6 →n = 3	D) n = 6 →n = 1	E) n = 1 →n = 4
Answer: D				
4) What is the de Brogl	ie wavelength (m) of a 2	25-g object moving at a	speed of 5.0 m/s?	
A) 3.32 × 10 ⁻³⁶	B) 6.6 × 10-36	C) 1.9 × 10 ³²	D) 5.3 × 10 ⁻³³	E) 3.02 × 10 ⁴⁵
Answer: D				
5) Which set of three qu	iantum numbers (n, l, m) corresponds to a 3p	orbital?	
A) 3,0,1	B) 3,1,0	C) 3,3,1	D) 3,0,0	E) 3,2,0
Answer: B				
6) Which one of the foll	owing represents an acc	ceptable possible set of	quantum numbers (in th	ne order n, l, m _l , m _s)
for an electron in an a	atom?			
A) 2, 1, 0, 0	B) 2, 0, 2, +1/2	C) 2, 2, 0, 1/2	D) 2, 0, 1, -1/2	E) 2, 1, -1, 1/2
Answer: E				

7) Which electron configuration denotes an atom in its ground state? A)

12) Screening of the nuclear charge by core electrons in atoms is _____

- A) responsible for a general decrease in atomic radius going down a group
- B) less efficient than that by valence electrons
- C) more efficient than that by valence electrons
- D) essentially identical to that by valence electrons
- E) <u>both</u> essentially identical to that by valence electrons <u>and</u> responsible for a general decrease in atomic radius going down a group

Answer: C

Consider the following electron configurations to answer the questions that follow:

(i) 1s² 2s² 2p⁶ 3s¹

- (ii) $1s^2 2s^2 2p^6 3s^2$
- (iii) 1s² 2s² 2p⁶ 3s² 3p¹
- (iv) 1s² 2s² 2p⁶ 3s² 3p⁴
- (v) $1s^2 2s^2 2p^6 3s^2 3p^5$

13) The electron configuration belonging to the atom with the highest second ionization energy is _____A) (i)B) (ii)C) (iii)D) (iv)Answer: A

14) The electron configuration of the atom with the most negative electron affinity is _____. A) (i) B) (ii) C) (iii) D) (iv) E) (v)

Answer: E

15) Which equation correctly represents the electron affinity of calcium?

A) Ca (g) \rightarrow Ca⁻ (g) + e⁻ B) Ca (g) + e⁻ \rightarrow Ca⁻ (g) C) Ca⁺ (g) + e⁻ \rightarrow Ca (g) D) Ca (g) \rightarrow Ca⁺ (g) + e⁻ E) Ca⁻ (g) \rightarrow Ca (g) + e⁻ Answer: B

16) The list that correctly indicates the order of metallic character is ______.

A) F > CI > Br B) Li > Na > K C) O > Se > S D) Sr > Ca > Mg E) C > Ge > Si

Answer: D

17) Of the hydrogen halides, only _____ is a weak acid.

- A) HBr (aq)
- B) HF (aq)
- C) HI (aq)
- D) HCI (aq)
- E) They are all weak acids.

Answer: B

 18) The reaction of alkal A) oxides B) superoxides C) peroxides D) all of the above E) none of the above Answer: D 	i metals with oxygen e ove	produce		
 Hydrogen is unique It has only one va It is the only elem Its electron is not It is the lightest el It is the only elem A) 1, 2, 3, 4, 5 	among the elements b lence electron. lent that can emit an a at all shielded from its ement. lent to exist at room te B) 2, 3, 4	ecause tomic spectrum. s nucleus. mperature as a diatom C) 3, 4	iic gas. D) 1, 3, 4	E) 1, 2, 3, 4
Answer: C	,	<i>,</i> .	,	,
20) Na reacts with eleme	ent X to form an ionic	compound with the fo	rmula Na ₃ X. Ca will read	ct with X to form
A) Ca ₃ X	B) Ca ₂ X ₃	C) CaX ₂	D) Ca ₃ X ₂	E) CaX
Answer: D				
 21) Which of the followi A) The enthalpy c the reverse rea B) Internal energy C) Enthalpy is an D) The enthalpy c pressure. E) The enthalpy c Answer: C 	ng statements is <u>false?</u> hange for a reaction is ction. / is a state function. intensive property. hange for a reaction de hange for a reaction de	equal in magnitude, b equal to the heat char epends on the state of	but opposite in sign, to th age of the reaction under the reactants and produc	e enthalpy change for conditions of constant
22) The change in the in surroundings is	ternal energy of a syst	em that absorbs 2,500.	J of heat and that does 7,	655 J of work on the
A) 10,155 Answer: D	B) -10,155	C) 5,155	D) -5,155	E) 1.91 × 10 ⁷
23) Which of the followi A) Energy lost by B) $E_k = \frac{1}{2}mv^2$ C) A negative ΔH D) $\Delta E = E_{final} - E$ E) 1 cal = 4.184 J (Answer: A	ng is a statement of th the system must be ga corresponds to an exe initial exactly)	e first law of thermody ined by the surroundi othermic process.	ynamics? ngs.	
24) What is the enthalpy having a density of ² A) -12.51	/ change (in kJ) of a ch 1.25 g/mL by 7.80 °C? B) 6.51	emical reaction that ra (The specific heat of th C) -9.12	ises the temperature of 2 e solution is 3.74 joules/g D) -7.43	50.0 mL of solution gram-K.) E) 8.20

Answer: C

- 25) An 8.29 g sample of calcium carbonate [CaCO₃ (s)] absorbs 50.3 J of heat, upon which the temperature of the sample increases from 21.1 °C to 28.5 °C. What is the specific heat of calcium carbonate?
 A) 1.1
 B) 4.2
 C) 2.2
 D) .63
 E) .82
 Answer: E
- 26) The value of ΔH° for the reaction below is -790 kJ. The enthalpy change accompanying the reaction of 0.95 g of $\frac{1}{2}$

2S (s) + $3O_2$ (g) → 2SO₃ (g) A) -12 B) 12 C) -23 D) 23 E) -790 Answer: A

27) ΔH for the reaction

 $IF_5 (g) \rightarrow IF_3 (g) + F_2 (g)$ is ______ kJ, give the data below. $IF (g) + F_2 (g) \rightarrow IF_3 (g) \qquad \Delta H = -390 \text{ kJ}$

IF (g) + 2 F₂ (g) → IF₅ (g) $\Delta H = -745 \text{ kJ}$ A) +35 B) +355 C) -35 D) -1135 E) +1135 Answer: B

28) For which one of the following reactions is the value of ΔH°_{rxn} equal to ΔH°_{f} for the product?

A) 2 H₂ (g) + O₂ (g) → 2 H₂O (l) B) 2 H₂ (g) + O₂ (g) → 2 H₂O (g) C) N₂ (g) + O₂ (g) → 2 NO (g) D) 2 C (s, graphite) + 2 H₂ (g) → C₂H₄ (g) E) H₂O (l) + 1/2 O₂ (g) → H₂O₂ (l) Answer: D

29) Given the data in the table below, ΔH°_{rxn} for the reaction

 $Ca(OH)_2 + 2H_3AsO_4 \rightarrow Ca(H_2AsO_4)_2 + 2H_2O$

is _____ kJ.

Substance	ΔH_{f}° (kJ/mol)			
Ca(OH) ₂	-986.6			
H ₃ AsO ₄	-900.4			
Ca(H ₂ AsO ₄) ₂	-2346.0			
H ₂ O	- 285.9			
A) -4519	B) -76.4	C) -130.4	D) -4219	E) -744.9
Answer: C				

30) Given the data in the table below and ΔH°_{rxn} for the reaction

 $SO_2CI_2(g) + 2H_2O(I) \rightarrow H_2SO_4(I) + 2HCI(g)$ $\Delta H^\circ = -62 \text{ kJ}$

 ΔH°_{f} of HCI (g) is _____ kJ/mol.

Substance	ΔH_{f}° (kJ/mol)				
SO ₂ (g)	-297				
SO ₃ (g)	-396				
SO ₂ CI ₂ (g)	-364				
H ₂ SO ₄ (I)	-814				
H ₂ O (I)	-286				
A) 60 B) -92 C) -184 D) 30 E) Insufficient data are given.					
Answer: B					

31) In which of the molecules below is the carbon-carbon distance the shortest?

A) H-C≡C-H
B) H₂C=C=CH₂
C) H₃C-CH₃
D) H₃C-CH₂-CH₃
E) H₂C=CH₂

Answer: A

32) Which of the following has the bonds correctly arranged in order of increasing polarity?

A) N-F, Be-F, Mg-F, O-F B) Be-F, Mg-F, N-F, O-F C) Mg-F, Be-F, N-F, O-F D) O-F, N-F, Be-F, Mg-F E) O-F, Be-F, Mg-F, N-F

Answer: D

33) The Lewis structure of N₂H₂ shows _____.

A) each nitrogen has one nonbonding electron pair

B) a nitrogen-nitrogen single bond

C) a nitrogen-nitrogen triple bond

D) each nitrogen has two nonbonding electron pairs

E) each hydrogen has one nonbonding electron pair

Answer: A

For the questions that follow, consider the BEST Lewis structures of the following oxyanions:

(i) NO ₂ - (ii) N	0 ₃ - (iii) SO ₃ 2- (iv) SO ₄ 2- (v) BrO ₃ -		
34) There can be fou A) (i) Answer: D	ır equivalent best resona B) (ii)	nce structures of C) (iii)	 D) (iv)	E) (v)
35) A valid Lewis st A) NI ₃ Answer: B	ructure of canr B) ICI5	not be drawn without v C) SO ₂	iolating the octet rule. D) SiF4	E) CO ₂
36) The Lewis struct bonding electror A) 1, 2 Answer: E	ture of PF ₃ shows that th n pair(s). B) 3, 1	ne central phosphorus a C) 3, 3	tom has nonbon D) 2, 2	ding and E) 1, 3
37) In the Lewis stru A) 0, -1 Answer: C	icture of HCO ₃ -, the for B) +1, -1	mal charge on H is C) 0, 0	, and the formal char D) -1, +1	rge on C is E) -1, -1
38) How many equi A) 2 Answer: E	valent resonance forms o B) 4	can be drawn for CO3 ² C) 0	-? (Carbon is the central a D) 1	tom.) E) 3
39) Of the following A) Ni Answer: E	, cannot accom B) Os	nmodate more than an c C) Sb	octet of electrons. D) Sc	E) Be
40) Using the table of average bond energies below, the ΔH for the reaction is kJ.				
$H - C \equiv C - H(g) + 2HI(g) \rightarrow I - C - C - I(g)$ $H - H H$ $H - C \equiv C - H(g) + 2HI(g) \rightarrow H H$				
Bond: D (kJ/mol):	C=C C-C H-I 839 348 299	C-I C-H 240 413		
A) +160 Answer: D	B) -160	C) +63	D) -217	E) -63