1062-2nd Chem Exam-1070516(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) For a given reaction, $\Delta S = +69.0 \text{ J/mol} \cdot \text{K}$, and the reaction is spontaneous at temperatures above the crossover temperature, 439 K. The value of $\Delta H = ___$ kJ/mol, assuming that ΔH and ΔS do not vary with temperature.

A) 30.3 B) 1.57 × 10⁻⁴ C) 6.36 × 10⁻³ D) -1.57 × 10⁻⁴ E) -30.3

Answer: A

2) A reversible process is one that _____.

- A) is spontaneous in both directions
- B) must be carried out at low temperature
- C) can be reversed with no net change in either system or surroundings
- D) happens spontaneously
- E) must be carried out at high temperature

Answer: C

3) A reaction that is not spontaneous at low temperature can become spontaneous at high temperature if ΔH is

 $\underline{\qquad} and \Delta S \text{ is } \underline{\qquad} . \\ A) +, + B) -, - C) +, - D) -, + E) +, 0 \\ Answer: A$

- 4) Consider a pure crystalline solid that is heated from absolute zero to a temperature above the boiling point of the liquid. Which of the following processes produces the greatest increase in the entropy of the substance?
 - A) heating the solid
 - B) vaporizing the liquid
 - C) melting the solid
 - D) heating the liquid
 - E) heating the gas

Answer: B

5) The standard Gibbs free energy of formation of ______ is zero.

- (a) H₂O (l)
 (b) Fe (s)
 (c) I₂ (s)

 A) (a) only
 B) (b) only
 C) (c) only
- D) (b) and (c)
- E) (a), (b), and (c)
- Answer: D

6) Given the thermodynamic data in the table below, calculate the equilibrium constant (at 298 K) for the reaction:

 $2 \text{ SO}_2(g) + \text{ O}_2(g) \rightleftharpoons 2 \text{ SO}_3(g)$

Substance	$\Delta H_{f^{\circ}}$ (kJ/mol)	S° (J/mol · K)
SO ₂ (g)	-297	249
O ₂ (g)	0	205
SO ₃ (g)	- 395	256

A) 1.06

B) 2.40×10^{24} C) 1.95D) 3.82×10^{23} E) More data are needed.

Answer: B

7) The equilibrium constant for a reaction is 0.38 at 25 °C. What is the value of ΔG° (kJ/mol) at this temperature?

- A) 200
- B) 4.2
- C) -4.2
- D) 2.4

E) More information is needed.

Answer: D

8) The second law of thermodynamics states that _____.

- A) $\Delta E = q + w$
- B) the entropy of a pure crystalline substance is zero at absolute zero
- C) $\Delta S = q_{rev}/T$ at constant temperature
- D) for any spontaneous process, the entropy of the universe increases
- E) $\Delta H^{\circ}_{rxn} = \Sigma n \Delta H^{\circ}_{f}$ (products) $\Sigma m \Delta H^{\circ}_{f}$ (reactants)

Answer: D

9) For the reaction

 $C_{2}H_{6}\left(g\right) \rightarrow C_{2}H_{4}\left(g\right) + H_{2}\left(g\right)$

 Δ H° is +137 kJ/mol and Δ S° is +120 J/K · mol. This reaction is _____. A) spontaneous at all temperatures B) nonspontaneous at all temperatures C) spontaneous only at high temperature D) spontaneous only at low temperature

Answer: C

D) spontaneous only at low temperature

10) The normal boiling point of methanol is 64.7 °C and the molar enthalpy of vaporization if 71.8 kJ/mol. The value of Δ S when 1.75 mol of CH₃OH (I) vaporizes at 64.7 °C is ______ J/K.

A) 372 B) 4.24 × 10⁷ C) 1.94 D) 0.372 E) 1.94 × 10³ Answer: A Use the table below to answer the questions that follow.

Substance	$\Delta H^{\circ}f$ (kJ/mol)	$\Delta G^{\circ} f$ (kJ/mol)	S (J/K-mol)
Carbon			
C (s, diamond)	1.88	2.84	2.43
C (s, graphite)		0	5.69
C ₂ H ₂ (g)	226.7	209.2	200.8
C ₂ H ₄ (g)	52.30	68.11	219.4
C ₂ H ₆ (g)	-84.68	-32.89	229.5
CO (g)	-110.5	-137.2	197.9
CO ₂ (g)	-393.5	- 394.4	213.6
Hydrogen			
H ₂ (g)	0	0	130.58
Oxygen			
O ₂ (g)	0	0	205.0
H ₂ O (I)	-285.83	-237.13	69.91

Thermodynamic Quantities for Selected Substances at 298.15 K (25 °C)

11) The value of ΔS° for the catalytic hydrogenation of acetylene to ethene,

 $C_2H_2(g) + H_2(g) \rightarrow C_2H_4(g)$

is _____ J/K· mol. A) +112.0 B) −18.6 C) −112.0 D) +550.8 E) +18.6 Answer: C

12) With thermodynamics, one cannot determine _____.

A) the extent of a reaction

B) the temperature at which a reaction will be spontaneous

C) the speed of a reaction

D) the direction of a spontaneous reaction

E) the value of the equilibrium constant

Answer: C

13) Of the following,	the entropy of gaseous _	is the larges	t at 25 °C and 1 atm.	
A) Cl ₂	B) O3	C) F ₂	D) I ₂	E) Br ₂

Answer: D

14) A solution containing which one of the following pairs of substances will be a buffer solution?

A) KBr, HBr

B) Nal, HI

C) CsF, HF

D) RbCl, HCl

E) none of the above

Answer: C

- 15) A solution is prepared by dissolving 0.23 mol of hydrofluoric acid and 0.27 mol of sodium fluoride in water sufficient to yield 1.00 L of solution. The addition of 0.05 mol of HCI to this buffer solution causes the pH to drop slightly. The pH does not decrease drastically because the HCI reacts with the _____ present in the buffer solution. The K_a of hydrofluoric acid is 1.36×10^{-3} .
 - A) fluoride ion
 - B) H₃O⁺
 - C) hydrofluoric acid
 - D) H₂O
 - E) This is a <u>buffer</u> solution: the pH does not change upon addition of acid or base.

Answer: A

16) Which of the following could be added to a solution of sodium acetate to produce a buffer?

- A) acetic acid or hydrochloric acid
- B) sodium chloride or potassium acetate
- C) potassium acetate only
- D) acetic acid only
- E) hydrochloric acid only

Answer: A

17) Of the following solutions, which has the greatest buffering capacity?

A) They are all buffer solutions and would all have the same capacity.

B) 0.821 M HF and 0.217 M NaF

C) 0.100 M HF and 0.217 M NaF

- D) 0.821 M HF and 0.909 M NaF
- E) 0.121 M HF and 0.667 M NaF

Answer: D

18) In which of the following aqueous solutions would you expect PbCl₂to have the lowest solubility?

A) 0.015 M PbNO₃
B) 0.015 M NaCI
C) 0.020 M KCI
D) pure water
E) 0.020 M BaCl₂

Answer: E

19) A result of the common-ion effect is _____.

- A) that ions such as K⁺ and Na⁺ are common ions, so that their values in equilibrium constant expressions are always 1.00
- B) that common ions, such as Na+ (aq), don't affect equilibrium constants
- C) that some ions, such as Na⁺ (aq), frequently appear in solutions but do not participate in solubility equilibria
- D) that the selective precipitation of a metal ion, such as Ag⁺, is promoted by the addition of an appropriate counterion (X⁻) that produces a compound (AgX) with a very low solubility
- E) that common ions precipitate all counter-ions

Answer: D

20) What is the solubility (in M) of PbCl₂ in a 0.15 M solution of HCl? The K_{sp} of PbCl₂ is 1.6×10^{-5} .

A) 7.1×10^{-4} B) 1.1×10^{-4} C) 2.0×10^{-3} D) 1.8×10^{-4} E) 1.6×10^{-5} Answer: A

- 21) Calculate the pH of a solution prepared by dissolving 0.150 mol of benzoic acid and 0.300 mol of sodium benzoate in water sufficient to yield 1.00 L of solution. The K_a of benzoic acid is 6.30 × 10⁻⁵.
 A) 4.195 B) 2.516 C) 4.502 D) 10.158 E) 3.892 Answer: C
- 22) A 25.0 mL sample of an HCl solution is titrated with a 0.139 M NaOH solution. The equivalence point is reached with 25.3 mL of base. The concentration of HCl is ______ M.
 A) 0.0352 B) 11.7 C) 0.00352 D) 0.139 E) 0.141
 Answer: E
- 23) A 25.0 mL sample of 0.723 M HCIO₄ is titrated with a 0.27 M KOH solution. The H₃O⁺ concentration after the addition of 80.0 mL of KOH is ______ M.

A) 4 × 10⁻² B) 0.7 C) 1 × 10⁻⁷ D) 0.4 E) 3 × 10⁻¹³ Answer: E

- 24) A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. The unknown compound is ______.
 - A) a weak baseB) a strong acidC) a strong baseD) a weak acid
 - E) neither an acid nor a base

Answer: D

25) The solubility of manganese (II) hydroxide (Mn(OH)₂) is 2.2×10^{-5} M. What is the K_{sp} of Mn(OH)₂?

A) 2.1 × 10-14	B) 1.1 × 10-14	C) 2.2 × 10 ⁻⁵	D) 4.8 × 10-10	E) 4.3 × 10-14
Answer: E				

26) Calculate the maximum concentration (in M) of silver ions (Ag⁺) in a solution that contains 0.025 M of $CO_3^{2^-}$. The K_{sp} of Ag₂CO₃ is 8.1 × 10⁻¹².

A) 1.4×10^{-6} B) 8.1×10^{-12} C) 2.8×10^{-6} D) 1.8×10^{-5} E) 3.2×10^{-10} Answer: D

27) A solution of NaF is added dropwise to a solution that is 0.0144 M in Ba^{2+} . When the concentration of F-

exceeds _____ M, BaF₂ will precipitate. Neglect volume changes. For BaF₂, $K_{sp} = 1.7 \times 10^{-6}$. A) 2.7×10^{-3} B) 5.9×10^{-5} C) 1.1×10^{-2} D) 1.2×10^{-4} E) 2.4×10^{-8} Answer: C

28) Which one of the following is a Brønsted-Lowry acid?

A) HNO₂

B) (CH₃)₃NH+ C) HF

- D) CH₃COOH
- E) all of the above

Answer: E

29) Which one of the following statements regarding K_W is <u>false</u>?

- A) K_W changes with temperature.
- B) K_W is known as the ion product of water.
- C) The value of K_W shows that water is a weak acid.
- D) pK_W is 14.00 at 25°C
- E) The value of K_W is always 1.0×10^{-14} .

Answer: E

30) Classify the following compounds as weak acids (W) or strong acids (S):

hydrocyanic acid hydrofluoric aciфhenol

A) W W W	B) S W W	C) W S W	D) W S S	E)SSS
Answer: A				

31) HA is a weak acid. Which equilibrium corresponds to the equilibrium constant Kb for A-?

A) $A^-(aq) + H_2O(I) \implies HA(aq) + OH^-(aq)$ B) $HA(aq) + H_2O(I) \implies H_2A^+(aq) + OH^-(aq)$ C) $A^-(aq) + H_3O^+(aq) \implies HA(aq) + H_2O(I)$ D) $A^-(aq) + OH^-(aq) \implies HOA^{2-}(aq)$ E) $HA(aq) + OH^-(aq) \implies H_2O(I) + H^+(aq)$ Answer: A

32) In which of the following aqueous solutions does the weak acid exhibit the lowest percentage ionization?

A) 0.01 M HC₂H₃O₂ (K_a = 1.8×10^{-5})

B) 0.01 M HF $(K_a = 6.8 \times 10^{-4})$

C) 0.01 M HCIO ($K_a = 3.0 \times 10^{-8}$)

D) 0.01 M HNO₂ ($K_a = 4.5 \times 10^{-4}$)

E) These will all exhibit the same percentage ionization.

Answer: C

33) Using the data in the table, which of the conjugate bases below is the weakest base?

	Acid	Ka			
	HOAc	1.8 × 10 ⁻⁵			
	HC7H5O2	6.3 × 10-5			
	HNO ₂	4.5 × 10 ⁻⁴			
	HF	6.8 × 10 ⁻⁴			
۸)	C7H5O2 ⁻				
A) B)					
	NO ₂ -				
-	OAc-				
-	OAC OAc- and (᠂ᠴᡰᡄᢕ᠋᠈᠆			
رے Answ		5711502			
Allsw	el. D				
34) Which	n of the follo	owing aqueous solution	ns has the lowest [OH-]?		
A)	a 1 × 10-3 N	A solution of NH ₄ Cl			
B)	a 1 × 10-4 N	A solution of HNO3			
	pure water				
		vith a pOH of 12.0			
		vith a pH of 3.0			
Answ	er: D				
35) Of the	e following	substances, an aqueous	solution of w	ill form <u>basic</u> solutions.	
	NH ₄ CI	Cu(NO ₃) ₂ K ₂ CO ₃	NaF		
A)	NaF only				
-	K ₂ CO ₃ , N⊦	I ₄ CI			
C)	NaF, K ₂ CO	3			
D)	NH4CI, Cu	(NO ₃) ₂			
E)	NH ₄ CI on	У			
Answ	ver: C				
36) What	is the nH o	f an aqueous solution a	t 25.0 °C that contains 3.98	3×10^{-9} M bydroxide ion?	,
	9.00	B) 3.98	C) 8.40	D) 5.60	E) 7.00
Answ	ver: D				
		c acid (HCO ₂ H) is $1.8 \times$	10^{-4} . What is the pH of a	0.10 M aqueous solution	of sodium formate
-	CO ₂)?	D) E 40	() 12	D) 1144	E) 0 27
	3.39	B) 5.63	C) 4.26	D) 11.64	E) 8.37
Answ	er: E				

38) The pH of a 0.55 M a HBrO?	queous solution of hyp	obromous acid, HBrO,	at 25.0 °C is 4.48. What	is the value of K _a for	
A) 3.3 × 10 ⁻⁵	B) 2.0 × 10 ⁻⁹	C) 6.0 × 10 ⁻⁵	D) 1.1 × 10 ⁻⁹	E) 3.0 × 10 ⁴	
Answer: B					
39) A 7.0 × 10 ⁻³ M aque	ous solution of Ca(OH)	2 at 25.0 °C has a pH o	f		
A) 11.85	B) 12.15	C) 7.1 × 10-13	D) 1.85	E) 1.4 × 10-2	
Answer: B					
40) The base-dissociation constant of ethylamine (C ₂ H ₅ NH ₂) is 6.4×10^{-4} at 25.0 °C. The [H+] in a 1.6×10^{-2} M					
solution of ethylamir			D = 1 + 12	F) 0.0 10 ²	
A) 3.2 × 10 ⁻³	B) 3.5 × 10-12	C) 11.46	D) 3.1 × 10-12	E) 2.9 × 10 ⁻³	
Answer: D					