1042_1st Exam_1050330(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) For the reaction: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ the rate law is:

$$\frac{\Delta[O_2]}{\Delta t} = k[N_2O_5]$$

At 300 K, the half-life is 2.50×10^4 seconds and the activation energy is 103.3 kJ/mol O₂. At the time when N₂O₅ is being consumed at a rate of 1.2×10^{-4} M/s, what is the rate at which NO₂ is being formed?

- A) 3.0×10^{-5} M/s
- B) 2.4×10^{-4} M/s
- C) 6.0×10^{-5} M/s
- D) 1.2×10^{-4} M/s
- E) 4.8×10^{-4} M/s

Answer: B

- 2) The reaction has the rate law Rate = $k[A][B]^2$. Which will cause the rate to increase the most?
 - A) doubling [A]
 - B) quadrupling [A]
 - C) tripling [B]
 - D) doubling [B]
 - E) lowering temperature

Answer: C

- 3) The reaction A + B \rightarrow C + D is second order in A and zero order in B. The value of k is 0.012 M⁻¹ min⁻¹. What is the rate of this reaction when [A] = 0.125 M and [B] = 0.435 M?
 - A) 3.4×10^{-3} M min⁻¹
 - B) 1.3 M min-1
 - C) 1.5×10^{-3} M min-1
 - D) 1.9×10^{-4} M min-1
 - E) 5×10^{-4} M min-1

Answer: D

4) Data for the reaction $A + B \rightarrow C$ are given below. Find the rate constant for this system.

Experiment	[A], M	[B], M	Initial rate, M/s
1	0.030	0.060	2.5 × 10-5
2	0.030	0.020	2.5×10^{-5}
3	0.060	0.060	10.0 × 10-5

- A) $2.8 \times 10^{-2} \text{ M}_{2s}^{-1}$
- B) $1.7 \times 10^{-3} \text{ M} 1_{\text{S}} 1$
- C) $2.8 \times 10^{-2} \text{ Ms}^{-1}$
- D) $2.8 \times 10^{-2} \text{ M} \cdot 1_{\text{S}} \cdot 1$
- E) 1.7×10^{-3} Ms⁻¹

Answer: D

- 5) In the first order, reaction A →products, [A] = 0.400 M initially and 0.250 M after 15.0 min, what will [A] be after 175 min?
 - A) 1.04×10^{-3} M
 - B) 2.31×10^{-1} M
 - C) 1.67×10^{-3} M
 - D) 3.70×10^{-2} M
 - E) 6.024×10^{-3} M

Answer: C

- 6) For the reaction A →products, the following data are obtained:
 - [A] = 1.512 M, t = 0 min
 - [A] = 1.490 M, t = 1.0 min
 - $[A] = 1.469 \, M, t = 2.0 \, min$

What is the rate constant, *k*, for the reaction?

- A) 1.4×10^{-2} M-1 min-1
- B) 2.2×10^{-2} M-1 min-1
- C) 9.7×10^{-3} M-1 min-1
- D) $1.0 \times 10^{-2} \text{ M} \cdot 1 \text{ min} \cdot 1$
- E) 3.6×10^{-3} M-1 min-1

Answer: C

- 7) A variable that has NO effect on reaction rate is:
 - A) energy of activation
 - B) concentration
 - C) catalyst
 - D) temperature
 - E) none of these

Answer: E

8) What is the rate constant at 305 K for the reaction:

$$2N_2O_5 \rightarrow 2N_2O_4 + O_2$$

if $k = 3.46 \times 10^{-5} \text{ s}^{-1}$ at 298 K and $E_a = 106 \text{ kJ/mol}$?

- A) $2.4 \times 10^{-5} \text{ s}^{-1}$
- B) $1.2 \times 10^{-5} \text{ s}^{-1}$
- C) $4.8 \times 10^{-5} \text{ s}^{-1}$
- D) $9.2 \times 10^{-5} \text{ s}^{-1}$
- E) $6.0 \times 10^{-5} \text{ s}^{-1}$

Answer: D

9) For the reaction: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ the rate law is:

$$\frac{\Delta[O_2]}{\Delta t} = k[N_2O_5]$$

At 300 K, the half-life is 2.50×10^4 seconds and the activation energy is 103.3 kJ/mol O₂. What is the halflife at

- A) 6.57 × 103 s
- B) $2.49 \times 104 \text{ s}$
- C) $9.51 \times 106 \text{ s}$ D) $1.87 \times 10^{-1} \text{ s}$
- E) $9.51 \times 104 \text{ s}$

Answer: A

2HgCl ₂ + 0 HgCl ₂ + 0 HgCl ₂ C ₂ C Hg + HgCl	$C_2O_4^2 - \rightarrow 2CI - + 2CO_2O_4^2 - \Rightarrow HgCI_2C_2O_4$ $O_4^2 - + C_2O_4^2 - \Rightarrow HgCI_2$ $O_2^2 - \Rightarrow HgCI_2$ $O_2^2 - \Rightarrow C_2O_4^2 - + CO_2$ $O_2^2 - \Rightarrow C_2O_4^2 - +$	_	(overall reaction (F) 2- (S) (F) (F)	
11) The first order reac	tion A →products has	s t _{1/2} = 150 sec. What perc	ent of the sample rem	ains unreacted after 300
sec? A) 100% Answer: D	B) 50%	C) 0.0%	D) 25%	E) 12.5%
12) If the half-life of a corder. A) third B) zero C) second D) first E) none of these Answer: D		he concentration of the re	actant, then the reaction	on cannot be
13) The rate constant for decomposed after 5		on is $k = 0.00073 \text{ s}^{-1}$. Deter	rmine the percent of re	eactant that has
A) 69% Answer: C	B) 43%	C) 31%	D) 57%	E) 37%
			(s) + H ₂ O(g) ≠€O(g) + SO ₂ (g) + O ₂ (g) ≠2SO ₃	= -

15) Given the following:

I) $N_2O(g) + 1/2 O_2(g) \iff NO(g)$

$$K_C = 1.7 \times 10^{-13}$$

II) $N_2(g) + O_2(g) \rightleftharpoons NO(g)$

$$K_{\rm C} = 4.1 \times 10 - 31$$

Find the value of the equilibrium constant for the following equilibrium reaction:

$$N_2(g) + 1/2 O_2(g) \Leftrightarrow N_2O(g)$$

A) 2.6×10^{-22}

B) 2.4 × 10-18

C) 1.6×10^{-9}

D) 4.2 × 1017

E) $7.0 \times 10-44$

Answer: B

16)	Consider the following reaction. $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$				
	At equilibrium at a certain temperature, $[H_2O(g)] = 0.12$ M, and $[CO(g)] = [H_2(g)] = 1.2$ M. If suddenly these concentrations are increased by 0.50 M, which of the following is true?				
	A) Since K_C does not change, nothing happens C) $K_C = 4.66$	S.	B) more products are formed D) more H ₂ O(g) will be formed		
	Answer: B				
17)	For the reaction: 3 Fe(s) + 4 H ₂ O(g) ←Fe ₃ O ₄ (s) + temperature of an exothermic reaction? A) The reaction shifts to the right. B) The K _p is doubled. C) The reaction shifts to the left. D) The K _p is decreased. E) There is no change. Answer: C, D	4 H ₂ (g) w	hat is the effect on equilibrium of i	increasing	
18)	For the reaction; $N_2(g) + 3 H_2(g) \rightleftharpoons NH_3(g)$, the	e eauilibriu	m amount of NH3 will be increase	ed bv:	
,	I. increaseing the pressure II. adding H ₂ III. rer	-		J	
	A) III only B) II, III	C) I, II	D) I, III	E) II, IV	
	Answer: C				
19)	For the following reaction $O_2(g) \rightleftharpoons O(g)$	mo2			
	what conditions favor production of oxygen atorA) low temperature and high pressureC) high temperature and low pressure	112;	B) high temperature and high pr D) low temperature and low pres		
	Answer: C				
20)	Consider the following equation: $N_2O_4(g) \rightleftharpoons NO_2(g) \ K_C = 5.8 \times 10^{-3}$ If the initial concentration of $N_2O_4(g) = 0.040 \ M$	and the init	ial concentration of NO2(a) is 0 N/	l what is the	
	equilibrium concentration of $N_2O_4(g)$?	and the init		i, what is the	
	A) 2.3 × 10-6 M				
	B) 3.3 × 10-2 M				
	C) 1.9 × 10-2 M				
	D) 1.7 × 10-2 M E) 2.6 × 10-2 M				
	Answer: B				
21)	For the reaction 2 NO(g) \Leftrightarrow N2O4(g) K_p equals:		_,	_, (,)	
	A) $K_{\mathbb{C}}(RT)$ B) $RT/K_{\mathbb{C}}$	C) K _C	D) K _C /RT	E) $K_{\rm C}({\rm RT})^2$	
	Answer: D				

2P PC ca 2P	iven the following react $PCI_3(g) \rightleftharpoons P(g) + 3CI_2(g)$ $\rightleftharpoons PCI_5(g) \rightleftharpoons PCI_5(g)$ lculate K_C for the react $P(g) + 5CI_2(g) \rightleftharpoons PCI_5(g)$	g) $K_C = 0.0667$ g) $K_C = 4.0$ ion below.			
	A) 23 nswer: B	B) 240	C) 1	.1	D) 60
A	iswei. D				
	or a reaction, the reaction A) shifts to the left B) shifts to the right C) is exothermic D) is at equilibrium E) is endothermic nswer: A	on quotient, <i>Q</i> _C > <i>K</i>	, the reaction:		
21\	t a certain temperature, MgCl2(s) + O2(g) ⇌2Mo alculate K _C for the react	$gO(s) + 2CI_2(g)$	H = +39.6 kJ for the re	eaction below.	
M	gO(s) + Cl ₂ (g) ⇒MgCl ₂	$\frac{1}{2}$ (s) + $\frac{1}{2}$ O ₂ (g)			
	nd indicate whether the A) 4.47, larger nswer: A	value will be large B) 0.224, sm		er temperature. 0.224, larger	D) 400, smaller
1.0	0866 atm. What is K_{p} for				ium is 0.3500 atm. Ptotal =
	A) 2.86 nswer: B	B) 128	C) 0.350	D) 182	E) 66.9
	mixture, containing 0.0 4HCl(g) + O2(g) t equilibrium [Cl2] = 0.	⇔2Cl2(g) + 2H2O(g)	owed to come to equ	ilibrium at 480°C.
	A) 890	B) 0.13	C) 1.3	D) 480	E) 1.1 × 10-3
	nswer: A	<i>D</i>) 0.10	<i>Oj</i> 1.0	<i>D)</i> 400	L) 1.1 × 10 -
27) W	hich of the following is	s the strongest base	?		
-	A) CI-	B) H ₂ O	C) NO ₃ -	D) CIO ₄ -	E) F-
Ar	nswer: E				
	noose the INCORRECT A) = -log [H3O+] B) = -ln [H+] C) is more convenient D) refers to the "potent E) = 14 - pOH nswer: B	than exponential r	notation		

29) 0.272 g of a monoprotion pH = 4.93. Determine t		9	water to produce 25.0 n	nL of a solution with
A) 2.8 × 10-7	B) 4.1 × 10-8	C) 2.4×10^{-9}	D) 1.4 × 10-10	E) 2.1 × 10-4
Answer: C				
30) For which of the follow A) H ₂ CO ₃	ving polyprotic acids B) H ₂ S	is the first ionization st C) H ₃ PO ₄	ep approximately 100%? D) H2SO3	e) H ₂ SO ₄
Answer: E				
31) What is the [HPO ₄ -2]		•	d"?	
	-3 ; $K_{a2} = 6.3 \times 10^{-8}$;			
A) 1.6×10^{-9}	B) 4.2 × 10-13	C) 1.6 × 10-16	D) 6.3 × 10-8	E) 7.1 × 10-3
Answer: D				
B) Ammonium aceta C) The salt is a prod D) This salt does not	ia and acetic acid havate is a weak electroly uct of a strong acid an	ve approximately equal yte. nd a strong base.	•	
33) Which species in the for CuSO4(s) + 4N A) Cu(NH3)4 ²⁺ B) Cu ²⁺ C) SO4 ²⁻ D) NH3 E) All are acids. Answer: B	onowing reaction acts IH3(aq) →Cu(NH3)4			
34) Consider the reaction: HC2H3O2 + H Choose the pair of subst A) H2O and C2H3O B) HC2H3O2 and C C) HC2H3O2 and H D) H2O and H3O+ E) all are bases Answer: A)2- 2H3O2-	-		
35) A saturated aqueous solution of calcium hydroxide is approximately 0.13% calcium hydroxide, by mass, and				
has a density of 1.02 g (A) 11.95 Answer: E	mI-1. What is the pH B) 12.25	of such a solution? C) 12.75	D) 13.00	E) 12.55

36) Hypochlorous aci 0.10 M solutions, A) 0.57% and 0 B) 0.32% in bot C) 0.032% and D) 0.57% in bot E) 0.018% and Answer: E	respectively? .18% h 0.0032% h	ation constant of 3.2 × 1	10-8. What is its percent	ionization in 1.0 M and
A) basic becausB) acidic becausC) neutral becausD) basic becaus	compound, predict where it is a weak base use it is a strong acid wase there is no hydroly se it is the salt of a weak use it is a we	rsis c acid	cidic, basic or neutral an	d why: NaC2H3O2.
38) What is the nH of	a 0.052 M solution of s	odium acetate? $K_2 = 1$	8 × 10-5	
A) 5.3	B) 10.0	C) 3.0	D) 8.7	E) 11.0
Answer: D	,	.,	, -	,
39) List the following HBrO A) HIO < HCIO B) HBrO < HIO C) HCIO < HIO D) HCIO < HBr E) HIO < HBrO Answer: E	O < HCIO O < HBrO O < HIO	asing strength:		
40) Which indication A) HCI > HF B) H2SO3 > HI C) HCIO2 > HC D) CH3CO2H : E) H2SO4 > H2 Answer: B	CIO > CH3CH2OH	ns is INCORRECT?		