1042_2nd Exam_1050518(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) Identify a good buffer.
 - A) significant amounts of both a weak acid and its conjugate base
 - B) small amounts of both a strong acid and a strong base
 - C) significant amounts of both a weak acid and a strong acid
 - D) significant amounts of both a strong acid and a strong base
 - E) small amounts of both a weak acid and its conjugate base

Answer: A

2) If the pKa of HCHO₂ is 3.74 and the pH of an HCHO₂/NaCHO₂ solution is 3.11, which of the following is TRUE?

- A) [HCHO₂] > [NaCHO₂]
- B) [HCHO₂] < [NaCHO₂]
- C) [HCHO₂] << [NaCHO₂]
- D) $[HCHO_2] = [NaCHO_2]$

E) It is not possible to make a buffer of this pH from HCHO₂ and NaCHO₂.

Answer: A

3) Calculate the pH of a buffer that is 0.225 M HC₂H₃O₂ and 0.162 M KC₂H₃O₂. The K_a for HC₂H₃O₂ is 1.8 ×

10 ⁻⁵ .				
A) 9.26	B) 4.74	C) 9.11	D) 4.89	E) 4.60
Answer: E				

C) 4.74

4) Calculate the pH of a solution formed by mixing 250.0 mL of 0.15 M NH₄Cl with 200.0 mL of 0.12 M NH₃. The

D) 9.06

E) 4.55

K_{b} for NH ₃ is 1.8 × 10 ⁻⁵ .		
A) 9.45	B) 9.26	

797.40	,		
Answer:	D		

5) Which of the following is TRUE?

- A) An effective buffer has a [base]/[acid] ratio in the range of 10 100.
- B) A buffer is most resistant to pH change when [acid] = [conjugate base]
- C) A buffer can not be destroyed by adding too much strong base. It can only be destroyed by adding too much strong acid.
- D) An effective buffer has very small absolute concentrations of acid and conjugate base.
- E) None of the above are true.

Answer: B

6) When titrating a strong monoprotic acid and KOH at 25°C, the

- A) pH will be equal to 7 at the equivalence point.
- B) pH will be greater than 7 at the equivalence point.
- C) titration will require more moles of acid than base to reach the equivalence point.
- D) pH will be less than 7 at the equivalence point.
- E) titration will require more moles of base than acid to reach the equivalence point.

Answer: A

7) A 100.0 mL sample of 0.10 M NH₃ is titrated with 0.10 M HNO₃. Determine the pH of the solution after the addition of 150.0 mL of HNO₃. The K_b of NH₃ is 1.8×10^{-5} .

A) 6.44 B) 2.30 C) 7.56 D) 12.30 E) 1.70 Answer: E

8) A 100.0 mL sample of 0.20 M HF is titrated with 0.10 M KOH. Determine the pH of the solution after the addition of 300.0 mL of KOH. The K_a of HF is 3.5×10^{-4} .

A) 9.33 B) 5.06 C) 12.40 D) 12.00 E) 8.94 Answer: C

9) Determine the molar solubility of AgBr in a solution containing 0.150 M NaBr. K_{SD} (AgBr) = 7.7 × 10⁻¹³.

A) 3.9 × 10⁻¹³ M B) 0.150 M C) 5.8 × 10⁻⁵ M D) 8.8 × 10⁻⁷ M E) 5.1 × 10⁻¹² M

Answer: E

10) Give the equation for an unsaturated solution in comparing Q with K_{SD} .

A) $Q > K_{sp}$ B) $Q < K_{sp}$ C) $Q \neq K_{sp}$ D) $Q = K_{sp}$ E) none of the above

Answer: B

11) A solution containing AgNO3 is mixed with a solution of NaCl to form a solution that is 0.10 M in AgNO3 and

0.075 M in NaCl. What will happen once these solutions are mixed? K_{SD} (AgCl) = 1.77 × 10⁻¹⁰.

- A) Silver chloride will precipitate out of solution, leaving a saturated AgCI solution.
- B) Nothing will happen since NaCl and AgNO3 are both soluble compounds.
- C) Silver chloride will precipitate out of solution, leaving an unsaturated solution of AgCI.
- D) Nothing will happen since the molar solubility of AgCI is higher than the solution concentrations.
- E) There is not enough information to say anything about this solution.

Answer: A

12) A solution contains 0.021 M Cl⁻ and 0.017 M l⁻. A solution containing copper (I) ions is added to selectively precipitate one of the ions. At what concentration of copper (I) ion will a precipitate begin to form? What is the identity of the precipitate? $K_{SD}(CuCl) = 1.0 \times 10^{-6}$, $K_{SD}(Cul) = 5.1 \times 10^{-12}$.

A) 3.0 × 10⁻¹⁰ M, CuCl B) 3.0 × 10⁻¹⁰ M, Cul

C) 4.8 × 10⁻⁵ M, CuCl

- D) 4.8 × 10⁻⁵ M, Cul
- E) No precipitate will form at any concentration of copper (I).

Answer: B

13) A solution contains 2.2×10^{-3} M in Cu²⁺ and 0.33 M in LiCN. If the K_f for Cu(CN)₄²⁻ is 1.0×10^{25} , how much copper ion remains at equilibrium?

A) 1.9 x 10⁻²⁶ M B) 3.8 × 10⁻²⁴ M C) 6.7 × 10⁻²⁸ M D) 4.6 × 10⁻²⁵ M

E) 2.9 × 10⁻²⁷ M

Answer: A

14) Which of the following statements is TRUE?

A) Perpetual motion machines are a possibility in the near future.

B) The entropy of a system always decreases for a spontaneous process.

C) A spontaneous reaction is always a fast reaction.

D) There is a "heat tax" for every energy transaction.

E) None of the above are true.

Answer: D

15) The ______ Law of Thermodynamics states the energy is conserved in chemical processes.

A) Zero	B) First	C) Second	D) Third	E) Fourth
Answer: B				

16) _____ is a thermodynamic function that increases with the number of energetically equivalent ways to arrange components of a system to achieve a particular state.

A) Entropy

B) Free energy

C) Molar equivalence

D) Enthalpy

E) Heat of reaction

Answer: A

17) The _____ Law of Thermodynamics states that for any spontaneous reaction, the entropy of the universe increases.

 A) Zero
 B) First
 C) Second
 D) Third
 E) Fourth

Answer: C

18) Which of the following processes have a $\Delta S > 0$?

- A) N₂(g) + 3 H₂(g) →2 NH₃(g)
- B) Na₂CO₃(s) + H₂O(g) + CO₂(g) \rightarrow 2 NaHCO₃(s)
- C) CH₃OH(I) \rightarrow CH₃OH(s)

D) $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3 H_2(g)$

E) All of the above processes have a $\Delta S > 0$.

Answer: D

19) Which of the following statements is TRUE?

- A) Endothermic processes decrease the entropy of the surroundings, at constant T and P.
- B) Endothermic processes are never spontaneous.
- C) Exothermic processes are always spontaneous.
- D) Entropy is not a state function.
- E) None of the above are true.

Answer: A

20) Which of the following relationships is correct at constant T and P?

- A) $\Delta G > 0$ represents an increase in kinetic energy
- B) $\Delta G < 0$ represents a nonspontaneous process
- C) ΔG is proportional to ΔS_{UNIV}
- D) $\Delta G > 0$ represents a spontaneous process
- E) All of the above are correct

Answer: C

21) Consider a reaction that has a positive ΔH and a positive ΔS . Which of the following statements is TRUE?

- A) This reaction will be nonspontaneous at all temperatures.
- B) This reaction will be spontaneous at all temperatures.
- C) This reaction will be nonspontaneous only at high temperatures.
- D) This reaction will be spontaneous only at high temperatures.
- E) It is not possible to determine without more information.

Answer: D

22) For the following example, identify the following.

 $2 \operatorname{N}_2 \operatorname{O}(g) \rightarrow 2 \operatorname{N}_2(g) + \operatorname{O}_2(g)$

A) a negative ΔH and a negative ΔS

B) a negative ΔH and a positive ΔS

- C) a positive ΔH and a positive ΔS
- D) a positive ΔH and a negative ΔS
- E) It is not possible to determine without more information.

Answer: B

23) Above what temperature does the following reaction become nonspontaneous?

2 H₂S(g) + 3 O₂(g) → 2 SO₂(g) + 2 H₂O(g)
$$\Delta H = -1036$$
 kJ; $\Delta S = -153.2$ J/K

A) 298 K
B) 158.7 K
C) 6.762 × 10³ K
D) This reaction is nonspontaneous at all temperatures.
E) This reaction is spontaneous at all temperatures.
Answer: C

 24) The ______ Law of Thermodynamics states the entropy of a perfect crystal at absolute zero is zero.

 A) Zero
 B) First
 C) Second
 D) Third
 E) Fourth

 Answer: D

25) Which of the following statements is TRUE?

- A) $\Delta S_{\text{Universe}}$ is always greater than zero for a nonspontaneous process.
- B) Entropy is not temperature dependent.
- C) Exothermic processes decrease the entropy of the surroundings.
- D) Entropy is an extensive property.
- E) None of the above are true.

Answer: D

26) Place the following in order of decreasing standard molar entropy.

 $N_2O_4(g)$ NO(g) $NO_2(g)$ A) NO > NO₂ > N₂O₄ B) $NO_2 > NO > N_2O_4$ C) $N_2O_4 > NO_2 > NO_2$ D) NO > N_2O_4 > NO_2 E) $N_2O_4 > NO > NO_2$ Answer: C 27) Calculate the ΔG°_{rxn} using the following information. $2 \text{HNO}_3(aq) + \text{NO}(g) \rightarrow 3 \text{NO}_2(g) + \text{H}_2O(I)$ $\Delta G^{\circ}rxn = ?$ (at room temperature) ΔH°_{f} (kJ/mol) -207.0 91.3 -285.8 33.2 S°(J/mol[·]K 146.0 240.1 70.0 210.8 A) -85.5 kJ B) +50.8 kJ C) -151 kJ D) -186 kJ E) +222 kJ Answer: B 28) Use Hess's law to calculate ΔG°_{rxn} using the following information. $NO(g) + O(g) \rightarrow NO_2(g)$ $\Delta G^{\circ}rxn = ?$ $2 O_3(g) \rightarrow 3 O_2(g)$ $\Delta G^{\circ}rxn = +489.6 \text{ kJ}$ $O_2(g) \rightarrow 2 O(g)$ $\Delta G^{\circ}rxn = +463.4 \text{ kJ}$ $NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$ $\Delta G^{\circ}rxn = -199.5 \text{ kJ}$ C) -225.7 kJ A) -1152.5 kJ B) +753.5 kJ D) +277.0 kJ E) -676.0 kJ Answer: E 29) Choose the statement below that is TRUE. A) K < 1, ΔG°_{rxn} is negative. B) $\Delta G^{\circ}_{rxn} = 0$ at equilibrium. C) K > 1, ΔG°_{rxn} is positive. D) $\Delta G_{rxn} = 0$ at equilibrium. E) None of the above statements are true. Answer: D

30) Determine the equilibrium constant for the following reaction at 655 K.

HCN(g) + 2 H ₂ (g) →CH ₃ NH ₂ (g)		$\Delta H^\circ = -158$			
A) 13.0 Answer: A	B) 3.26 × 10-12	C) 3.99 × 10 ¹²	D) 3.07 × 10 ¹¹	E) 2.51 × 10 ⁻¹³	
-	is responsible for the red				
A) Cr ⁵⁺ Answer: C	B) Cr ⁷⁺	C) Cr ³⁺	D) Cr ⁶⁺	E) Cr ⁴⁺	
32) Choose the electron	configuration for Fe^{3+} .				
A) [Ar]3d ⁵ Answer: A	B) [Ar]4s ² 3d ⁹	C) [Ar]4s ² 3d6	D) [Ar]4s ¹ 3d ⁴	E) [Ar]4s ² 3d ³	
 33) Name the following: [Fe(H₂O)₄Br₂]Cl A) tetraaquadibromoiron(II) chloride B) iron(II)dibromotetraquachloride C) dibromotetrahydroiron(II)chloride D) dibromotetrahydroironchloride E) tetraaquadibromoiron(III) chloride Answer: E 					
 34) Identify the isomers A) coordination is B) structural ison C) linkage isomer D) geometric ison E) constitutional Answer: D 	ners rs ners	ifferent spatial arrange	ements about the metal i	ons.	
isomers? A) [Fe(CO)5NO2] B) [Fe(NH3)2(H2 C) [MnCl3Br] ²⁻ a D) [Fe(NH3)2(H2	ing pairs of coordination $[^{2+}$ and [Fe(CO) ₅ ONO] ² $[^{O})_4]Cl_2$ and [Fe(NH ₃) ₄ and [MnCIBr ₃] ²⁻ $[^{O})_4]Cl_2$ and [Fe(NH ₃) ₂ 1 and [Cu(CO) ₅ CI]Br	2+ (H ₂ O) ₂]Cl ₂	ex ions are examples of c	cordination	

Answer: E

36) Which of the following compounds can exhibit cis-trans isomerism?

- A) [Cr(H₂O)₆]3⁺
- B) [MnCIBr₃]²⁻
- C) [Fe(CO)₅NO₂]²⁺
- D) [Cu(CO)₅Cl]⁺
- E) [Ni(CO)₂(NH₃)₂]²⁺

Answer: E

37) Which of the following complex ions absorbs light of the shortest wavelength?

A) [FeCI ₆] ³⁻				
B) [Fe(OH) ₆] ³⁻				
C) [Fe(CN) ₆] ³ -				
D) [Fe(H ₂ O) ₆] ³⁺				
E) [FeI ₆] ³⁻				
Answer: C				
38) The complex ion, [Ni(energy (in kJ/mol) for A) 343 kJ/mol Answer: B	this ion.	num absorption near 58 C) 485 kJ/mol	-	ystal field splitting E) 292 kJ/mol
39) How many unpaired (electrons would you ex	pect for the complex ic	on: [Co(OH) ₆] ³⁻ ?	
A) 0 Answer: B	B) 4	C) 2	D) 1	E) 3
40) Identify the shape of t A) heptadral Answer: B	he hemoglobin comple B) octahedral	x. C) hexadral	D) pentadral	E) tetrahedral