## 1071-2nd Chem Exam-1071128(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The halogens, alkali metals, and alkaline earth metals have $\qquad$ valence electrons, respectively.
A) 7,4 , and 6
B) 2, 7, and 4
C) 8,2 , and 3
D) 7,1 , and 2
E) 1,5 , and 7

Answer: D
2) The only noble gas without eight valence electrons is $\qquad$ .
A) He
B) Ar
C) Kr
D) Ne
E) All noble gases have eight valence electrons.

Answer: A
3) For a given arrangement of ions, the lattice energy increases as ionic radius $\qquad$ and as ionic charge
$\qquad$
A) decreases, decreases
B) increases, increases
C) decreases, increases
D) increases, decreases
E) This cannot be predicted.

Answer: C
4) What is the maximum number of double bonds that a hydrogen atom can form?
A) 0
B) 1
C) 2
D) 3
E) 4

Answer: A
5) Given the electronegativities below, which covalent single bond is most polar?

| Element: | H | C | N | O |
| :--- | :---: | :---: | :---: | :---: |
| Electronegativity: | 2.1 | 2.5 | 3.0 | 3.5 |

A) $\mathrm{O}-\mathrm{N}$
B) $\mathrm{C}-\mathrm{H}$
C) $\mathrm{N}-\mathrm{H}$
D) $\mathrm{O}-\mathrm{C}$
E) $\mathrm{O}-\mathrm{H}$

Answer: E
6) The ion $\mathrm{PO}_{4}{ }^{3-}$ has $\qquad$ valence electrons.
A) 24
B) 32
C) 27
D) 14
E) 29

Answer: B
7) The formal charge on sulfur in $\mathrm{SO}_{4}{ }^{2-}$ is $\qquad$ where the Lewis structure of the ion is:

A) -4
B) -2
C) 0
D) +4
E) +2

Answer: C
8) How many equivalent resonance forms can be drawn for $\mathrm{SO}_{2}$ without expanding octet on the sulfur atom (sulfur is the central atom)?
A) 2
B) 1
C) 4
D) 3
E) 0

Answer: A
9) Using the table of average bond energies below, the $\Delta H$ for the reaction is $\qquad$ kJ.

| $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}(\mathrm{g})+\mathrm{H}-\mathrm{I}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{C}=\mathrm{CHI}(\mathrm{g})$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bond: | C $\equiv$ C | $C=C$ | H-I | C-I | C-H |
| D (kJ/mol): | 839 | 614 | 299 | 240 | 413 |

A) +129
B) -931
C) -506
D) - 129
E) +506

Answer: D
10) Which of the following has eight valence electrons?
A) $\mathrm{Cl}^{-}$
B) $\mathrm{Ti}^{4+}$
C) $\mathrm{Na}^{+}$
D) Kr
E) all of the above

Answer: E
11) An electron in $a(n)$ $\qquad$ subshell experiences the greatest effective nuclear charge in a many- electron atom.
A) 3 d
B) $3 p$
C) 3 f
D) 3 s
E) 4 s

Answer: D
12) A tin atom has 50 electrons. Electrons in the $\qquad$ subshell experience the lowest effective nuclear charge.
A) 1 s
B) $3 p$
C) 5 s
D) 3d
E) $5 p$

Answer: E
13) Oxides of the active metals combine with water to form $\qquad$ .
A) hydrogen gas
B) oxygen gas
C) metal hydroxides
D) water and a salt
E) metal hydrides

Answer: C
14) The substance $\qquad$ is always produced when an active metal reacts with water.
A) NaOH
B) $\mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{H}_{2}$
D) $\mathrm{CO}_{2}$
E) $\mathrm{O}_{2}$

Answer: C
15) The most common and stable allotrope of sulfur is $\qquad$ -
A) $S_{2}$
B) S
C) $\mathrm{S}_{4}$
D) $S_{8}$
E) Sulfur does not form allotropes.

Answer: D
16) The element phosphorus exists in two forms in nature called white phosphorus and red phosphorus. These two forms are examples of $\qquad$ —.
A) noble gases
B) isotopes
C) oxidation
D) metalloids
E) allotropes

Answer: E
17) Of the halogens, which are gases at room temperature and atmospheric pressure?
A) fluorine, chlorine, and bromine
B) fluorine, bromine, and iodine
C) fluorine and chlorine
D) fluorine, chlorine, bromine, and iodine
E) fluorine, chlorine, and iodine

Answer: C
18) $2 \mathrm{~F}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow$ $\qquad$
A) $2 \mathrm{~F}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$
B) $2 \mathrm{HF}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
C) $4 \mathrm{HF}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$
D) $2 \mathrm{HF}(\mathrm{aq})+2 \mathrm{HFO}(\mathrm{aq})$
E) $4 \mathrm{HF}(\mathrm{aq})+2 \mathrm{O}^{2-}$ (aq)

Answer: C
19) In which set of elements would all members be expected to have very similar chemical properties?
A) $\mathrm{S}, \mathrm{Se}, \mathrm{Si}$
B) $\mathrm{Na}, \mathrm{Mg}, \mathrm{K}$
C) $\mathrm{O}, \mathrm{S}, \mathrm{Se}$
D) N, O, F
E) $\mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}$

Answer: C
20) Screening of the nuclear charge by core electrons in atoms is $\qquad$ _.
A) less efficient than that by valence electrons
B) responsible for a general decrease in atomic radius going down a group
C) more efficient than that by valence electrons
D) essentially identical to that by valence electrons
E) both essentially identical to that by valence electrons and responsible for a general decrease in atomic radius going down a group
Answer: C
21) What is the wavelength of light ( nm ) that has a frequency $4.62 \times 10^{14} \mathrm{~s}^{-1}$ ?
A) $1.39 \times 10^{23}$
B) $1.07 \times 10^{6}$
C) 649
D) 932
E) $1.54 \times 10^{-3}$

Answer: C
22) The uncertainty principle states that $\qquad$ .
A) it is impossible to know how many electrons there are in an atom
B) matter and energy are really the same thing
C) it is impossible to know the exact position and momentum of an electron
D) there can only be one uncertain digit in a reported number
E) it is impossible to know anything with certainty

Answer: C
23) The de Broglie wavelength of a car $\left(1.0 \times 10^{3} \mathrm{~kg}\right)$ traveling at $75 \mathrm{~km} h r$ is $\qquad$ m .
A) $1.4 \times 1035$
B) $8.8 \times 10^{-39}$
C) $3.2 \times 10^{-38}$
D) $1.4 \times 10^{-35}$
E) $3.2 \times 10^{-35}$

Answer: C
24) Of the following transitions in the Bohr hydrogen atom, the $\qquad$ transition results in the emission of the lowest- energy photon.
A) $n=3 \rightarrow n=6$
B) $\mathrm{n}=1 \rightarrow \mathrm{n}=4$
C) $\mathrm{n}=6 \rightarrow \mathrm{n}=3$
D) $\mathrm{n}=6 \rightarrow \mathrm{n}=1$
E) $\mathrm{n}=1 \rightarrow \mathrm{n}=6$

Answer: C
25) The angular momentum quantum number is 3 in $\qquad$ orbitals.
A) a
B) s
C) d
D) f
E) $p$

Answer: D
26) Which of the following is a valid set of four quantum numbers? $\left(\mathrm{n}, \mathrm{l}, \mathrm{m} l, \mathrm{~m}_{\mathrm{s}}\right)$
A) $2,2,1,-1 / 2$
B) $1,1,0,-1 / 2$
C) $2,1,0,+1 / 2$
D) $1,0,1,+1 / 2$
E) $2,1,+2,+1 / 2$

Answer: C
27) The ground state electron configuration of Fe is $\qquad$ .
A) $1 s^{2} 2 s^{2} 3 s^{2} 3 p^{6} 3 d^{6}$
B) $1 s^{2} 2 s^{2} 3 s^{2} 3 p 10$
C) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 4 d^{6}$
D) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
E) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$

## Answer: E

28) The ground- state electron configuration of $\qquad$ is $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$.
A) Cr
B) V
C) K
D) Fe
E) Mn

Answer: A
29) The electron configuration of a ground- state Ag atom is $\qquad$ -
A) $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 4 \mathrm{~d} 10$
B) $[\mathrm{Kr}] 5 s^{2} 4 \mathrm{~d} 10$
C) $[A r] 4 s^{2} 4 d^{9}$
D) $[K r] 5 s^{1} 4 d^{10}$
E) $[K r] 5 s^{2} 3 d^{9}$

## Answer: D

30) Which electron configuration represents a violation of Hund's rule for an atom in its ground state?
A)

B)

C)

D)

E)


Answer: C
31) Which one of the following statements is true?
A) Enthalpy is a state function.
B) Enthalpy is an intensive property.
C) H is the value of q measured under conditions of constant volume.
D) The enthalpy change of a reaction is the reciprocal of the $\Delta H$ of the reverse reaction.
E) The enthalpy change for a reaction is independent of the state of the reactants and products.

Answer: A
32) The change in the internal energy of a system that releases $2,500 \mathrm{~J}$ of heat and that does $7,655 \mathrm{~J}$ of work on the surroundings is $\qquad$ J.
A) $-10,155$
B) 5,155
C) $-1.91 \times 10^{7}$
D) 10,155
E) $-5,155$

Answer: A
33) A 22.44 g sample of iron absorbs 180.8 J of heat, upon which the temperature of the sample increases from 21.1 ${ }^{\circ} \mathrm{C}$ to $39.0^{\circ} \mathrm{C}$. What is the specific heat of iron?
A) 0.840
B) 0.450
C) 0.820
D) 0.140
E) 0.900

Answer: B
34) The temperature of a 12.58 g sample of calcium carbonate $[\mathrm{CaCO} 3(\mathrm{~s})]$ increases from $23.6^{\circ} \mathrm{C}$ to $38.2^{\circ} \mathrm{C}$. If the specific heat of calcium carbonate is $0.82 \mathrm{~J} / \mathrm{g}-\mathrm{K}$, how many joules of heat are absorbed?
A) 5.0
B) 151
C) 410
D) 0.82
E) 7.5

Answer: B
35) The value of $\Delta \mathrm{H}^{\circ}$ for the reaction below is -126 kJ . $\qquad$ kJare released when 2.00 mol of NaOH is former the reaction?

$$
2 \mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{NaOH}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

A) - 126
B) 3.9
C) 252
D) 63
E) 7.8

Answer: D
36) Given the following reactions

$$
\begin{array}{ll}
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-28.0 \mathrm{~kJ} \\
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{CO}_{2}(\mathrm{~s}) \rightarrow 4 \mathrm{CO}(\mathrm{~g})+\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) & \Delta \mathrm{H}=+12.5 \mathrm{~kJ}
\end{array}
$$

the enthalpy of the reaction of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ with CO

$$
3 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})
$$

is $\qquad$ kJ.
A) -59.0
B) 40.5
C) +109
D) -15.5
E) - 109

Answer: A
37) Given the following reactions

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=44.01 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-483.64 \mathrm{~kJ}
\end{array}
$$

the enthalpy for the decomposition of liquid water into gaseous hydrogen and oxygen

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

is $\qquad$ kJ.
A) -395.62
B) 527.65
C) -527.65
D) 439.63
E) 571.66

Answer: E
38) For which one of the following equations is $\Delta \mathrm{H}^{\circ}{ }_{r x n}$ equal to $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for the product?
A) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
B) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$
C) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{l})+2 \mathrm{HCl}(\mathrm{g})$
D) $\mathrm{Xe}(\mathrm{g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{XeF}_{4}(\mathrm{~g})$
E) C (diamond) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

Answer: D
39) Given the data in the table below, $\Delta \mathrm{H}^{\circ}{ }_{r x n}$ for the reaction

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

is $\qquad$ kJ.

| Substance | $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol})$ |
| :--- | :---: |
| $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | -286 |
| $\mathrm{NO}_{(\mathrm{g})}$ | 90 |
| $\mathrm{NO}_{2}(\mathrm{~g})$ | 34 |
| $\mathrm{HNO}_{3}(\mathrm{aq})$ | -207 |
| $\mathrm{NH}_{3}(\mathrm{~g})$ | -46 |

A) -150
B) -1172
C) -1540
D) -1892
E) The $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ of $\mathrm{O}_{2}(\mathrm{~g})$ is needed for the calculation.

Answer: B
40) Given the data in the table below, $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the reaction

$$
\mathrm{PCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{~g}) \rightarrow 3 \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{PH}_{3}(\mathrm{~g})
$$

is $\qquad$ kJ.

| Compound | $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} /$ mol $)$ |
| :--- | :---: |
| $\mathrm{PCl}_{3}(\mathrm{~g})$ | -288.07 |
| $\mathrm{HCl}(\mathrm{g})$ | -92.30 |
| $\mathrm{PH}_{3}(\mathrm{~g})$ | 5.40 |

A) -570.37
B) -385.77
C) 570.37
D) 385.77
E) The $\Delta \mathrm{H}^{\circ}$ fof $\mathrm{Cl}_{2}(\mathrm{~g})$ is needed for the calculation.

Answer: C

