1072 - 2nd Chem Exam-1080508 (A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) A Brønsted-Lowry acid is defined as a substance that _____.
 - A) acts as a proton acceptor
 - B) decreases $[H^+]$ when placed in H_2O
 - C) increases [OH⁻] when placed in H_2O
 - D) acts as a proton donor
 - E) increases K_a when placed in H₂O

Answer: D

2) According to the Arrhenius concept, an acid is a substance that ______.

- A) is capable of donating one or more H⁺
- B) can accept a pair of electrons to form a coordinate covalent bond
- C) causes an increase in the concentration of H⁺ in aqueous solutions
- D) reacts with the solvent to form the cation formed by autoionization of that solvent
- E) tastes bitter

Answer: C

- 3) Which statements regarding K_W are true?
 - (i) pK_W is 14.00 at 25 $^\circ\text{C}$
 - (ii) The value of K_W is always 1.0×10^{-14}
 - (iii) The value of $K_{\rm W}$ shows that water is a weak acid
 - (iv) K_W changes with temperature
 - (v) K_W is known as the ion product of water
 - A) (i), (ii), (iii), (iv) B) (ii), (iii), (iv), (v) C) (i), (ii), (iii), (iv), (v) D) (i), (iii), (iv), (v) E) (i), (ii), (iii)

Answer: D

4) Which one of the following is a Brønsted-Lowry base? A) CH₃COOH B) H₂S C) HF

D) HNO₂

E) (CH₃)₃N

Answer: E

5) Which of the following aqueous solutions has the highest [OH⁻]?

- A) a 1×10^{-3} M solution of NH₄Cl
- B) a solution with a pH of 3.0
- C) a 1×10^{-4} M solution of HNO₃
- D) pure water
- E) a solution with a pOH of 12.0

Answer: D

6) HA is a weak acid. Which equilibrium corresponds to the equilibrium constant Kb for A-?

- A) A^- (aq) + H_3O^+ (aq) \implies HA (aq) + H_2O (I) B) A⁻ (aq) + OH⁻ (aq) \implies HOA²⁻ (aq) C) HA (aq) + H₂O (I) \implies H₂A⁺ (aq) + OH⁻(aq) D) HA (aq) + OH⁻ (aq) \implies H₂O (l) + H⁺ (aq) E) A⁻ (ag) + H₂O (I) \implies HA (ag) + OH⁻ (ag) Answer: E 7) The conjugate base of $H_2PO_4^-$ is _____. B) HPO₄²⁻ C) H₂PO₄ D) H₃PO₄ A) PO₄3-E) H4PO4+ Answer: B 8) The K_a of hypochlorous acid (HCIO) is 3.0×10^{-8} at 25.0 °C. What is the percent ionization of hypochlorous acid in a 0.015 M aqueous solution of HCIO at 25.0 °C? E) 4.5 × 10-8 A) 1.4 × 10-3 B) 2.1 × 10⁻⁵ D) 14 C) 0.14 Answer: C
- 9) A 0.15 M aqueous solution of the weak acid HA at 25.0 °C has a pH of 5.35. The value of Ka for HA is

A) 1.3×10^{-10} B) 3.0×10^{-5} C) 3.3×10^{4} D) 7.1×10^{-9} E) 1.8×10^{-5} Answer: A

10) Using the data in the table, which of the conjugate bases below is the strongest base?

Acid	Ka				
HOAc	1.8 × 10 ⁻⁵				
HC7H5O2	6.3 × 10 ⁻⁵				
HNO ₂	4.5 × 10-4				
HF	6.8 × 10-4				
A) C7H5O2 ⁻	B) H	OAc	C) OAc-	D) NO ₂ -	E) HNO ₂
Answer: C					

11) Calculate the concentration (in M) of hydronium ions in a solution at 25.0 °C with a pOH of 4.223.

A) 1.00 × 10⁻⁷ B) 1.67 × 10⁴ C) 1.67 × 10⁻¹⁰ D) 5.98 × 10⁻⁵ E) 5.99 × 10⁻¹⁹ Answer: C 12) A 0.1 M aqueous solution of _____ will have a pH of 7.0 at 25.0 °C.

LiF RbBr NaClO₄ NH₄Cl

A) LiF and RbBr

- B) NaClO₄ only
- C) RbBr only
- D) NH₄CI only
- E) RbBr and NaClO₄

Answer: E

13) Which solution will be the most basic?

- A) 0.10 M CH₃OH
- B) 0.10 M Ba(OH)₂
- C) 0.10 M HCI
- D) 0.10 M KOH
- E) 0.10 M H₂O

Answer: B

14) In which of the following aqueous solutions would you expect AgBr to have the lowest solubility?

- A) 0.040 M KBr B) 0.040 M NaBr
- C) 0.010 M AgNO₃
- D) 0.040 M SrBr₂
- E) pure water
- Answer: D
- 15) What is the pH of a buffer solution that is 0.172 M in hypochlorous acid (HCIO) and 0.131 M in sodium hypochlorite? The K_a of hypochlorous acid is 3.8×10^{-8} .

A) 6.70	B) 7.30	C) 9.07	D) 14.12	E) 7.54
Answer: B				

16) What is the molar solubility of silver carbonate (Ag_2CO_3) in water? The solubility-product constant for

Ag₂CO₃ is 8.1×10^{-12} at 25 °C. A) 4.0×10^{-6} B) 1.3×10^{-4} C) 2.0×10^{-4} D) 1.4×10^{-6} E) 2.7×10^{-12} Answer: B

- 17) What change will be caused by addition of a small amount of HCI to a solution containing fluoride ions and hydrogen fluoride?
 - A) The concentration of hydronium ions will increase significantly.
 - B) The concentration of fluoride ions will increase as will the concentration of hydronium ions.
 - C) The fluoride ions will precipitate out of solution as its acid salt.
 - D) The concentration of hydrogen fluoride will decrease and the concentration of fluoride ions will increase.
 - E) The concentration of fluoride ion will decrease and the concentration of hydrogen fluoride will increase.

Answer: E

18) The solubility of lead (II) chloride (PbCl₂) is 1.6×10^{-2} M. What is the K_{sp} of PbCl₂?

A) 5.0×10^{-4} B) 1.6×10^{-5} C) 3.1×10^{-7} D) 4.1×10^{-6} E) 1.6×10^{-2} Answer: B

19) ⁻	The K _a of acetic acid is 1 acetate and 50.0 mL of 1	.76 × 10 ⁻⁵ . The pH of a .00 M acetic acid is	a buffer pre 	pared by cor	nbining 15.0 mL of 1.0	00 M potassium
	A) 0.851	B) 4.232	C) 3.406	I	D) 1.705	E) 2.383
	Answer: B					
20) /	A 25.0 mL sample of an reached with 15.4 mL of	HCI solution is titratec base. The concentratic	with a 0.13 on of HCI is	39 M NaOH s M.	solution. The equivale	ence point is
	A) 11.7	B) 0.00214	C) 0.139	I	D) 0.0856	E) 0.267
	Answer: D					
21)	n which of the following A) 0.015 M KF B) 0.030 M LiF C) 0.023 M NaF D) 0.0075 M AgNO ₃ E) pure water	g aqueous solutions we	ould you ex	pect AgF to	have the lowest solub	ility?
4	Answer: B					
22)	The pH of a solution pre	pared by mixing 40.0 r	mL of 0.125	M Mg(OH) ₂	and 150.0 mL of 0.12	5 M HCI is
-	A) 1.14	B) 5.78	C) 1.34	I	D) 4.11	E) 6.29
4	Answer: C					
23) /	A solution containing w A) Nal, HI B) CsF, HF C) KBr, HBr D) RbCl, HCI E) none of the above	hich one of the followi	ng pairs of	substances w	vill be a buffer solutio	n?
1	Answer: B					
24)	Of the following solution	ns, which has the great	test bufferin	ig capacity?		
	A) 0.365M HC ₂ H ₃ O ₂	and 0.497 M NaC ₂ H ₃	0 ₂	B) 0.121 M	HC ₂ H ₃ O ₂ and 0.116	$MNaC_2H_3O_2$
C) 0.821 M HC ₂ H ₃ O ₂ and 0.713 M NaC ₂ H ₃ O ₂				D) 0.521 M	HC ₂ H ₃ O ₂ and 0.217	$MNaC_2H_3O_2$

Answer: C

 $2 C_4 H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2 O(g)$

 Δ H° is -125 kJ/mol and Δ S° is +253 J/K · mol. This reaction is _____.

- A) spontaneous at all temperatures
- B) spontaneous only at low temperature
- C) spontaneous only at high temperature
- D) nonspontaneous only at high temperatures
- E) nonspontaneous only at low temperature

Answer: A

29) ΔS is positive for the reaction _____

A) $Ag^+(aq) + CI^-(aq) \rightarrow AgCI(s)$ B) $CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$ C) $H_2O(I) \rightarrow H_2O(s)$ D) $2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$ E) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

Answer: D

30) The normal boiling point of water is 100.0 °C and its molar enthalpy of vaporization is 40.67 kJ/mol. What is the change in entropy in the system in J/K when 24.7 grams of steam at 1 atm condenses to a liquid at the normal boiling point?

A) -88.8 B) 373 C) -150 D) 88.8 E) -40.7 Answer: C

31) Consider the reaction:

 NH_3 (g) + HCI (g) $\rightarrow NH_4CI$ (s)

Given the following table of thermodynamic data,

Substance	ΔH_{f}° (kJ/mol)	S° (J/mol · K)
NH3 (g)	-46.19	192.5
HCI (g)	-92.30	186.69
NH4CI (s)	-314.4	94.6

determine the temperature (in °C) above which the reaction is nonspontaneous.

A) This reaction is spontaneous at all temperatures.

- B) 345.0
- C) 618.1
- D) 1235
- E) 432.8

Answer: B

32) Consider the reaction:

 NH_3 (g) + HCI (g) $\rightarrow NH_4CI$ (s)

Given the following table of thermodynamic data at 298 K:

	Substance	ΔH_{f}° (kJ/mol)	S° (J/K · mol)			
	NH3 (g)	-46.19	192.5			
	HCI (g)	-92.30	186.69			
	NH ₄ CI (s)	-314.4	94.6			
The val	ue of K for t	he reaction at 25	°C is			
A) 8.	4 × 10 ⁴	B) 150	C) 1.4	× 10 ⁸	D) 1.1 × 10-16	E) 9.3 × 10 ¹⁵
Answei	r: E					
33) Which A) di B) su C) ey D) bo E) di	one of the fo issolving niti ublimation o cplosion of n piling of alco issolving soc	llowing processe: rogen in water f naphthalene itroglycerine bhol dium chloride in v	s produces a decr water	ease of the e	ntropy of the system?	
Answei	r: A					

34) Of the following, the entropy of ______ is the largest. A) HCl (g) B) HBr (g) C) HI (g) D) HCl (l) E) HCl (s) Answer: C 35) The thermodynamic quantity that expresses the extent of randomness in a system is ______.

- A) enthalpy
- B) bond energy
- C) heat flow
- D) internal energy
- E) entropy
- Answer: E

36) The standard Gibbs free energy of formation of ______ is zero.

- (a) H₂O (l) (b) O (g)
- (c) Cl_2 (g)
- A) (a) only
- B) (b) only
- C) (c) only
- D) (b) and (c)
- E) (a), (b), and (c)

Answer: C

37) For a reaction to be spontaneous at any condition, the signs of ΔH° and ΔS° must be	and	
respectively.		

A) -, -	B) +, +	C) –, +	D) +, –	E) +, 0
Answer: C				

- 38) If ΔG° for a reaction is less than zero, then _____.
 - A) K < 1
 - B) K = 1
 - C) K = 0
 - D) K > 1
 - E) more information is needed.

Answer: D

39) With thermodynamics, one cannot determine _____.

- A) the value of the equilibrium constant
- B) the extent of a reaction
- C) the direction of a spontaneous reaction
- D) the speed of a reaction
- E) the temperature at which a reaction will be spontaneous

Answer: D

40) Which one of the following is always positive when a spontaneous process occurs?

- A) ∆S_{system}
- B) $\Delta H_{universe}$
- C) $\Delta S_{surroundings}$
- D) $\Delta S_{universe}$
- E) $\Delta H_{surroundings}$

Answer: D