1071-3rd Chem Exam-1080109(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Of the following, \qquad has the odor of rotting eggs.
A) NH_{3}
B) $\mathrm{H}_{2} \mathrm{~S}$
C) CO
D) NO_{2}
E) HCN

Answer: B
2) Molecular compounds of low molecular weight tend to be gases at room temperature. Which of the following is most likely not a gas at room temperature?
A) Cl_{2}
B) HCl
C) LiCl
D) H_{2}
E) CH_{4}

Answer: C
3) Which of the following equations shows an incorrect relationship between pressures given in terms of different units?
A) $1.20 \mathrm{~atm}=122 \mathrm{kPa}$
B) $152 \mathrm{~mm} \mathrm{Hg}=2.03 \times 10^{4} \mathrm{~Pa}$
C) $0.760 \mathrm{~atm}=578 \mathrm{~mm} \mathrm{Hg}$
D) 1.0 torr $=2.00 \mathrm{~mm} \mathrm{Hg}$
E) $1.00 \mathrm{~atm}=760$ torr

Answer: D
4) Of the following, \qquad is a correct statement of Boyle's law.
A) $P V=$ constant
B) $\frac{P}{V}=\mathrm{constant}$
C) $\frac{V}{P}=$ constant
D) $\frac{V}{T}=\mathrm{constant}$
E) $\frac{n}{P}=$ constant

Answer: A
5) A mixture of Xe, Kr, and Ar has a total pressure of 6.70 atm . What is the mole fraction of Kr if the partial pressures of Xe and Ar are 1.60 atm and 2.80 atm , respectively.
A) 0.174
B) 0.256
C) 0.343
D) 0.481
E) 0.570

Answer: C
6) A gas vessel is attached to an open- end manometer containing a nonvolatile liquid of density $0.791 \mathrm{~g} / \mathrm{mL}$ as shown below.

The difference in heights of the liquid in the two sides of the manometer is 43.4 cm when the atmospheric pressure is 755 mm Hg . Given that the density of mercury is $13.6 \mathrm{~g} / \mathrm{mL}$, the pressure of the enclosed gas is \qquad atm.
A) 1.03
B) 0.967
C) 0.993
D) 0.990
E) 0.987

Answer: B
7) How many moles of gas are there in a 45.0 L container at $25.0^{\circ} \mathrm{C}$ and 500.0 mm Hg ?
A) 0.630
B) 6.11
C) 18.4
D) 1.21
E) 207

Answer: D
8) The van der Waals equation for real gases recognizes that \qquad .
A) gas particles have non- zero volumes and interact with each other
B) molar volumes of gases of different types are different
C) the non- zero volumes of gas particles effectively decrease the amount of "empty space" between them
D) the molecular attractions between particles of gas decreases the pressure exerted by the gas
E) all of the above statements are true

Answer: E
9) The reaction of 50 mL of Cl_{2} gas with 50 mL of CH_{4} gas via the equation:

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{Cl}(\mathrm{~g})
$$

will produce a total of \qquad mL of products if pressure and temperature are kept constant.
A) 100
B) 50
C) 200
D) 150
E) 250

Answer: A
10) A tank containing both HF and HBr gases developed a leak. The ratio of the rate of effusion of HF to the rate of effusion of HBr is \qquad —.
A) 4.04
B) 0.247
C) 2.01
D) 0.497
E) 16.3

Answer: C
11) Based on molecular mass and dipole moment of the five compounds in the table below, which should have the highest boiling point?

Substance	Molecular Mass (amu)	Dipole Moment (D)
Propane, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	44	0.1
Dimethylether, $\mathrm{CH}_{3} \mathrm{OCH}$	46	1.3
Methylchloride, $\mathrm{CH}_{3} \mathrm{Cl}$	50	1.9
Acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO}$	44	2.7
Acetonitrile, $\mathrm{CH}_{3} \mathrm{CN}$	41	3.9

A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
B) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
C) $\mathrm{CH}_{3} \mathrm{Cl}$
D) $\mathrm{CH}_{3} \mathrm{CHO}$
E) $\mathrm{CH}_{3} \mathrm{CN}$

Answer: E
12) In liquids, the attractive intermolecular forces are \qquad .
A) very weak compared with kinetic energies of the molecules
B) strong enough to hold molecules relatively close together
C) strong enough to keep the molecules confined to vibrating about their fixed lattice points
D) not strong enough to keep molecules from moving past each other
E) strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other
Answer: E
13) Which statements about viscosity are true?
(i) Viscosity increases as temperature decreases.
(ii) Viscosity increases as molecular weight increases.
(iii) Viscosity increases as intermolecular forces increase.
A) (i) only
B) (ii) and (iii)
C) (i) and (iii)
D) none
E) all

Answer: E
14) Of the following substances, only \qquad has London dispersion forces as the only intermolecular force.
A) $\mathrm{CH}_{3} \mathrm{OH}$
B) NH_{3}
C) $\mathrm{H}_{2} \mathrm{~S}$
D) Kr
E) HCl

Answer: D
15) Of the following, \qquad has the highest boiling point.
A) N_{2}
B) Br_{2}
C) H_{2}
D) Cl_{2}
E) O_{2}

Answer: B
16) Which one of the following substances will have hydrogen bonding as one of its intermolecular forces?
A)

B)

C)

D)

E)

Answer: D
17) Which of the following statements is false?
A) The absolute value of the heat of sublimation is equal to the absolute value of the heat of deposition.
B) The heat of sublimation is equal to the sum of the heat of vaporization and the heat of melting.
C) The heat of sublimation is equal to the sum of the heat of vaporization and the heat of freezing.
D) The absolute value of the heat of sublimation is equal to the absolute value of the sum of the heat of condensation and the heat of freezing.
E) The absolute value of the heat of deposition is equal to sum of the absolute value of the heat of vaporization and the absolute value of the heat of freezing.
Answer: C
18) The enthalpy change for converting 1.00 mol of ice at $-50.0^{\circ} \mathrm{C}$ to water at $70.0^{\circ} \mathrm{C}$ is \qquad kJ. The specific heats of ice, water, and steam are $2.09 \mathrm{~J} / \mathrm{g}-\mathrm{K}, 4.18 \mathrm{~J} / \mathrm{g}-\mathrm{K}$, and $1.84 \mathrm{~J} / \mathrm{g}-\mathrm{K}$, respectively. For $\mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}_{\text {fus }}=6.01$ $\mathrm{kJ} / \mathrm{mol}$, and $\Delta \mathrm{H}_{\text {vap }}=40.67 \mathrm{~kJ} / \mathrm{mol}$
A) 12.28
B) 6.41
C) 13.16
D) 7154
E) 9.40

Answer: C
19) Which of the following characteristics would prevent liquid crystal behavior?
A) long axial structure
B) ionic configuration
C) carbon- carbon single bonds
D) double bonding
E) polar groups

Answer: B
20) The critical temperature and pressure of CS_{2} are $279{ }^{\circ} \mathrm{C}$ and 78 atm , respectively. At temperatures above $279^{\circ} \mathrm{C}$ and pressures above $78 \mathrm{~atm}, \mathrm{CS}_{2}$ can only occur as a \qquad —.
A) solid
B) liquid
C) liquid and gas
D) gas
E) supercritical fluid

Answer: E

21) In counting the electron domains around the central atom in VSEPR theory, a \qquad is not included.
A) nonbonding pair of electrons
B) single covalent bond
C) core level electron pair
D) double covalent bond
E) triple covalent bond

Answer: C
22) The central iodine atom in IF_{5} has \qquad unbonded electron pairs and \qquad bonded electron pairs in its valence shell.
A) 1,5
B) 0,5
C) 5,1
D) 4,1
E) 1,4

Answer: A
23) For molecules of the general formula $A B_{n}, n$ can be greater than four \qquad .
A) for any element A
B) only when A is an element from the third period or below the third period
C) only when A is boron or beryllium
D) only when A is carbon
E) only when A is Xe

Answer: B
24) Of the molecules below, only \qquad is nonpolar.
A) CO_{2}
B) $\mathrm{H}_{2} \mathrm{O}$
C) NH_{3}
D) HCl
E) TeCl_{2}

Answer: A
25) Molecular Orbital theory correctly predicts paramagnetism of oxygen gas, O_{2}. This is because \qquad .
A) the bond order in O_{2} can be shown to be equal to 2 .
B) there are more electrons in the bonding orbitals than in the antibonding orbitals.
C) the energy of the $\pi 2 p \mathrm{MOs}$ is higher than that of the $\sigma_{2 p} \mathrm{MO}$
D) there are two unpaired electrons in the MO electron configuration of O_{2}
E) the $\mathrm{O}-\mathrm{O}$ bond distance is relatively short

Answer: D
26) The molecular geometry of the BCl_{3} molecule is \qquad , and this molecule is \qquad .
A) trigonal pyramidal, polar
B) trigonal pyramidal, nonpolar
C) trigonal planar, polar
D) trigonal planar, nonpolar
E) trigonal bipyramidal, polar

Answer: D
27) The bond angles marked a, b, and c in the molecule below are about \qquad and \qquad , respectively.

A) $90^{\circ}, 90^{\circ}, 90^{\circ}$
B) $120^{\circ}, 120^{\circ}, 90^{\circ}$
C) $120^{\circ}, 120^{\circ}, 109.5^{\circ}$
D) $109.5^{\circ}, 120^{\circ}, 109.5^{\circ}$
E) $109.5^{\circ}, 90^{\circ}, 120^{\circ}$

Answer: D

Consider the following species when answering the following questions:
(i) PCl_{3}
(ii) CCl_{4}
(iii) TeCl_{4}
(iv) XeF_{4}
(v) SF_{6}
28) In which of the molecules does the central atom utilize d orbitals to form hybrid orbitals?
A) (i) and (ii)
B) (iii) only
C) (i) and (v)
D) (iii), (iv), and (v)
E) (v) only

Answer: D
29) The hybridizations of bromine in BrF_{5} and of arsenic in AsF_{5} are \qquad and \qquad , respectively.
A) $\mathrm{sp}^{3}, \mathrm{sp}^{3} d$
B) $\operatorname{sp}^{3} d, \operatorname{sp}^{3} d^{2}$
C) $\mathrm{sp}^{3} d, \mathrm{sp}^{3}$
D) $p^{3} d^{2}, s p^{3} d$
E) $\mathrm{sp}^{3} \mathrm{~d}^{2}, \mathrm{sp}^{3} \mathrm{~d}^{2}$

Answer: D
30) Based on molecular orbital theory, the bond orders of the $\mathrm{H}-\mathrm{H}$ bonds in $\mathrm{H}_{2}, \mathrm{H}_{2}{ }^{+}$, and H_{2}^{-}are \qquad ,
respectively
A) 1,0 , and 0
B) $1,1 / 2$, and 0
C) 1,0 , and $1 / 2$
D) $1,1 / 2$, and $1 / 2$
E) 1,2 , and 0

Answer: D
31) \qquad solids consist of atoms or molecules held together by dipole- dipole forces, London dispersion force and/or hydrogen bonds.
A) Ionic
B) Molecular
C) Metallic
D) Covalent- network
E) Metallic and covalent- network

Answer: B
32) Potassium metal crystallizes in a body-centered cubic structure with a unit cell edge length of 5.31 A. The radius of a potassium atom is \qquad A.
A) 1.33
B) 1.88
C) 2.30
D) 2.66
E) 5.31

Answer: C
33) The transition metals in group \qquad have the highest melting points.
A) 4 B
B) 3 B
C) 6 B
D) 8 B
E) 2 B

Answer: C
34) A category \qquad plastic container will generally be the most easily recycled.
A) 1
B) 2
C) 3
D) 4
E) 22

Answer: A
35) Blue LEDs are usually made of \qquad .
A) GaAs
B) GaP
C) GaO
D) GaS
E) GaN

Answer: E
36) NaCl crystallizes in a face- centered cubic cell. What is the total number of ions (Na^{+}ions and Cl^{-}ions) that lie within a unit cell of NaCl ?
A) 2
B) 4
C) 8
D) 6
E) 5

Answer: C
37) The process of doping can produce a \qquad which can greatly \qquad intrinsic conductivity.
A) n-type semiconductor, increase
B) p-type semiconductor, decrease
C) non-metal, increase
D) non-metal, decrease
E) allotrope, diminish

Answer: A
38) 12 karat gold contains \qquad \% gold.
A) 12
B) 25
C) 5.0×10^{1}
D) 75
E) 1.0×10^{2}

Answer: C
39) As a polymer becomes more crystalline, \qquad .
A) its melting point decreases
B) its density decreases
C) its stiffness decreases
D) its yield stress decreases
E) None of the above is correct.

Answer: E
40) CsCl crystallizes in a unit cell that contains the $\mathrm{Cs}^{+}{ }^{\text {ion }}$ at the center of a cube that has a Cl^{-}at each corner. Each unit cell contains \qquad Cs^{+}ions and \qquad Cl^{-}, ions, respectively.
A) 1 and 8
B) 2 and 1
C) 1 and 1
D) 2 and 2
E) 2 and 4

Answer: C

