1052-1st Chem Exam-1060329(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The concentration of CO_{2} in a soft drink bottled with a partial pressure of CO_{2} of 6.5 atm over the liquid at 29 ${ }^{\circ} \mathrm{C}$ is $2.2 \times 10^{-1} \mathrm{M}$. The Henry's law constant for CO_{2} at this temperature is \qquad .
A) $5.6 \times 10^{-3} \mathrm{~mol} / \mathrm{L}-\mathrm{atm}$
B) $3.4 \times 10^{-2} \mathrm{~mol} / \mathrm{L}-\mathrm{atm}$
C) $7.6 \times 10^{-3} \mathrm{~mol} / \mathrm{L}-\mathrm{atm}$
D) $2.2 \times 10^{-1} \mathrm{~mol} / \mathrm{L}-\mathrm{atm}$
E) More information is needed to solve the problem.

Answer: B
2) Calculate the mole fraction of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right.$, molar mass $\left.=97.99 \mathrm{~g} / \mathrm{mol}\right)$ in a 25.4% (by mass) aqueous solution.
A) 4.14
B) 1.00
C) 0.0589
D) 0.259
E) 0.0626

Answer: C
3) Calculate the molality of a 25.4% (by mass) aqueous solution of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right.$, molar mass $=97.99$ $\mathrm{g} / \mathrm{mol}$).
A) 25.4 m
B) 4.45 m
C) 3.47 m
D) 2.59 m
E) The density of the solution is needed to solve the problem.

Answer: C
4) A solution is prepared by dissolving 15.0 g of NH_{3} (molar mass $=17.03 \mathrm{~g} / \mathrm{mol}$) in 250.0 g of water. The density of the resulting solution is $0.974 \mathrm{~g} / \mathrm{mL}$. The molarity of NH_{3} in the solution is \qquad -
A) 60.0
B) 3.53
C) 0.00353
D) 0.882
E) 3.24

Answer: E
5) A solution contains 15 ppm of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$, molar mass $\left.=78.11 \mathrm{~g} / \mathrm{mol}\right)$. The density of the solution is $1.00 \mathrm{~g} / \mathrm{mL}$. This means that \qquad _.
A) 100 g of the solution contains 15 g of benzene
B) there are 15 mg of benzene in 1.0 L of this solution
C) the solution is 15% by mass of benzene
D) the molarity of the solution is 15
E) 100 g of the solution contains 15 mg of benzene

Answer: B
6) A 1.35 m aqueous solution of compound X had a boiling point of $101.4^{\circ} \mathrm{C}$. Which one of the following could be compound X ? The boiling point elevation constant for water is $0.52^{\circ} \mathrm{C} / \mathrm{m}$.
A) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
C) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
D) KCl
E) CaCl_{2}

Answer: D
7) Of the following, a 0.1 M aqueous solution of \qquad will have the lowest freezing point.
A) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
B) NaCl
C) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
D) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
E) sucrose

Answer: A
8) Determine the freezing point of a solution that contains 78.8 g of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right.$, molar mass $=128.16$ $\mathrm{g} / \mathrm{mol}$) dissolved in 722 mL of benzene $(\mathrm{d}=0.877 \mathrm{~g} / \mathrm{mL})$. Pure benzene has a melting point $5.50^{\circ} \mathrm{C}$ and a freezing point depression constant of $4.90^{\circ} \mathrm{C} / \mathrm{m}$.
A) $1.68^{\circ} \mathrm{C}$
B) $0.74^{\circ} \mathrm{C}$
C) $4.17^{\circ} \mathrm{C}$
D) $4.76^{\circ} \mathrm{C}$
E) $1.33^{\circ} \mathrm{C}$

Answer: B
9) When two nonpolar organic liquids are mixed, a solution forms and the enthalpy of solution is quite small.

Label the two organic liquids as A (solvent) and B (solute). The formation of solution is favored by \qquad .
A) solvation of the solvent, A
B) the highly negative enthalpy of the solution process
C) the equal enthalpy of the solvent and solute
D) an increase in disorder, since $\mathrm{A}-\mathrm{A}, \mathrm{B}-\mathrm{B}$, and $\mathrm{A}-\mathrm{B}$ interactions are similar
E) hydration of the solute, B

Answer: D
10) A saturated solution \qquad .
A) will rapidly precipitate if a seed crystal is added
B) contains no double bonds
C) contains as much solvent as it can hold
D) cannot be attained
E) contains dissolved solute in equilibrium with undissolved solute

Answer: E
11) Which of the following substances is least likely to dissolve in water?
A) CHCl_{3}
B) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

D) CCl_{4}
E) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{2} \mathrm{OH}$

Answer: D
12) Calculate the vapor pressure of a solution made by dissolving 109 grams of glucose (molar mass $=180.2 \mathrm{~g} / \mathrm{mol}$) in 920.0 ml of water at $25^{\circ} \mathrm{C}$. The vapor pressure of pure water at $25^{\circ} \mathrm{C}$ is 23.76 mm Hg . Assume the density of the solution is $1.00 \mathrm{~g} / \mathrm{ml}$.
A) 23.48 mm Hg
B) 0.278 mm Hg
C) 22.98 mm Hg
D) 23.76 mm Hg
E) 0.605 mm Hg

Answer: A
13) A solution is prepared by dissolving 0.60 g of nicotine (a nonelectrolyte) in water to make 12 mL of solution. The osmotic pressure of the solution is 7.55 atm at $25^{\circ} \mathrm{C}$. The molecular weight of nicotine is \qquad $\mathrm{g} / \mathrm{mol}$.
A) 43
B) 160
C) 50
D) 0.60
E) 28

Answer: B
14) A reaction is found to have an activation energy of $38.0 \mathrm{~kJ} / \mathrm{mol}$. If the rate constant for this reaction is 1.60×10^{2} $\mathrm{M}^{-1} \mathrm{~S}^{-1}$ at 249 K , what is the rate constant at 436 K ?
A) $3.80 \times 10^{4} \mathrm{M}^{-1} \mathrm{~S}^{-1}$
B) $1.26 \times 10^{3} \mathrm{M}^{-1} \mathrm{~S}^{-1}$
C) $7.94 \times 10^{4} \mathrm{M}^{-1} \mathrm{~S}^{-1}$
D) $2.38 \times 10^{5} \mathrm{M}^{-1} \mathrm{~S}^{-1}$
E) $4.20 \times 10^{5} \mathrm{M}^{-1} \mathrm{~S}^{-1}$

Answer: E
15) Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction:

$$
2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}
$$

In a particular experiment at $300^{\circ} \mathrm{C},\left[\mathrm{NO}_{2}\right]$ drops from 0.0100 to 0.00650 M in 100 s . The rate of production of NO for this period is \qquad M / s.
A) 0.35
B) 1.8×10^{-3}
C) 7.0×10^{-3}
D) 3.5×10^{-3}
E) 3.5×10^{-5}

Answer: E
16) Consider the following reaction:

$$
3 \mathrm{~A} \rightarrow 2 \mathrm{~B}
$$

The average rate of appearance of B is given by $\Delta[B] / \Delta t$. Comparing the rate of appearance of B and the rate of disappearance of A , we get $\Delta[\mathrm{B}] / \Delta \mathrm{t}=$ \qquad $\times(-\Delta[\mathrm{A}] / \Delta \mathrm{t})$.
A) $+2 \beta$
B) $+3 / 2$
C) $-3 / 2$
D) +1
E) -2β

Answer: A

The data in the table below were obtained for the reaction:

$$
A+B \rightarrow P
$$

Experiment Number	$[\mathrm{A}](\mathrm{M})$	[B] (M)	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

17) The magnitude of the rate constant is \qquad .
A) 13.2
B) 0.278
C) 38.0
D) 42.0
E) 2.21

Answer: C
18) The mechanism for formation of the product X is:

$$
\begin{aligned}
& A+B \rightarrow C+D \\
& B+D \rightarrow X
\end{aligned} \quad \text { (slow) }
$$

The intermediate reactant in the reaction is \qquad .
A) A
B) B
C) C
D) D
E) X

Answer: D
19) The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in solution in carbon tetrachloride proceeds via the reaction

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\text { soln }) \rightarrow 4 \mathrm{NO}_{2}(\text { soln })+\mathrm{O}_{2}(\text { soln })
$$

The reaction is first order and has a rate constant of $4.82 \times 10^{-3} \mathrm{~s}^{-1}$ at $64{ }^{\circ} \mathrm{C}$. The rate law for the reaction is rate $=$ \qquad _.
A) $2 \mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
B) $\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
C) $k \frac{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{O}_{2}\right]}$
D) $k \frac{\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}}$
E) $\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{2}$

Answer: B
20) For a first- order reaction, a plot of \qquad versus \qquad is linear.
A) $\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}, \mathrm{t}$
B) $\ln [A]_{t} t$
C) $\ln [A]_{t}, \frac{1}{t}$
D) $[\mathrm{A}]_{t}, \mathrm{t}$
E) $t \frac{1}{[\mathrm{~A}]_{t}}$

Answer: B
21) A compound decomposes by a first- order process. If 25.0% of the compound decomposes in 60.0 minutes, the half- life of the compound is \qquad -
A) 145 minutes
B) 180 minutes
C) 198 minutes
D) 120 minutes
E) 65 minutes

Answer: A
22) Consider the following reaction:

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g})
$$

A reaction mixture initially contains 0.86 atm NO and $0.86 \mathrm{~atm} \mathrm{SO}_{3}$. Determine the equilibrium pressure of NO_{2} if K_{p} for the reaction at this temperature is 0.0118 .
A) 0.084 atm
B) 0.012 atm
C) 0.85 atm
D) 0.78 atm
E) 0.048 atm

Answer: A
23) A possible mechanism for the overall reaction

$$
\mathrm{Br}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{~g})
$$

is

$$
\begin{aligned}
& \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \underset{\mathrm{k}-1}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{NOBr}_{2}(\mathrm{~g}) \\
& \mathrm{NOBr}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \xrightarrow{\mathrm{k}_{2}} 2 \mathrm{NOBr}^{\text {(fast) }}
\end{aligned}
$$

The rate law for formation of NOBr based on this mechanism is rate $=$ \qquad .
A) $\mathrm{k}_{1}\left[\mathrm{Br}_{2}\right]^{1 / 2}$
B) $\left(\mathrm{k}_{2} \mathrm{k}_{1} \not \mathrm{k}^{-1}\right)[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]$
C) $\left(\mathrm{k}_{1} \mathrm{k}^{-1}\right)^{2}[\mathrm{NO}]^{2}$
D) $k_{1}[\mathrm{NO}]^{1 / 2}$
E) $\left(\mathrm{k}_{2} \mathrm{k}_{1} \not \mathbb{k}^{-1}\right)[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]^{2}$

Answer: B
24) The following reaction is second order in [A] and the rate constant is $0.039 \mathrm{M}^{-1} \mathrm{~S}^{-1}$:
$A \rightarrow B$

The concentration of A was 0.30 M at 23 s . The initial concentration of A was \qquad M.
A) 2.4
B) 0.27
C) 0.41
D) 3.7
E) 1.2×10^{-2}

Answer: C
25) The elementary reaction

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

is second order in NO_{2} and the rate constant at 501 K is $7.93 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The reaction half- life at this temperature when $\left[\mathrm{NO}_{2}\right]_{0}=0.45 \mathrm{M}$ is \qquad s.
A) 126
B) 0.011
C) 280
D) 3.6×10^{-3}
E) 87

Answer: C
26) In general, as temperature goes up, reaction rate \qquad .
A) goes up if the reaction is exothermic
B) goes up if the reaction is endothermic
C) stays the same regardless of whether the reaction is exothermic or endothermic
D) stays the same if the reaction is first order
E) goes up regardless of whether the reaction is exothermic or endothermic

Answer: E
27) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ decomposes in the gas phase by the reaction

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

The reaction is first order in $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and the rate constant is $3.0 \times 10^{-6} \mathrm{~s}^{-1}$ at 600 K . A vessel is charged with 2.4 atm of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ at 600 K . The partial pressure of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ at $3.0 \times 10^{5} \mathrm{~s}$ is \qquad atm.
A) 0.98
B) 1.4×10^{5}
C) 0.29
D) 2.2
E) 0.76

Answer: A
28) A catalyst can increase the rate of a reaction \qquad .
A) by lowering the activation energy of the reverse reaction
B) by increasing the overall activation energy $\left(E_{a}\right)$ of the reaction
C) by changing the value of the frequency factor (A)
D) by providing an alternative pathway with a lower activation energy
E) All of these are ways that a catalyst might act to increase the rate of reaction.

Answer: D
29) Which of the following expressions is the correct equilibrium- constant expression for the reaction below?

$$
\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})
$$

A) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right] /[\mathrm{HF}]\left[\mathrm{H}_{2} \mathrm{O}\right]$
B) $[\mathrm{HF}]\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]$
C) $\left[\mathrm{F}^{-}\right] /[\mathrm{HF}]$
D) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right] /[\mathrm{HF}]$
E) $1 /[\mathrm{HF}]$

Answer: D
30) Given the following reaction:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

In an experiment, 0.42 mol of CO and 0.42 mol of H_{2} were placed in a $1.00-\mathrm{L}$ reaction vessel. At equilibrium, there were 0.29 mol of CO remaining. K_{eq} at the temperature of the experiment is \qquad -.
A) 0.357
B) 17.5
C) 2.80
D) 14.5
E) none of the above

Answer: B
31) Dinitrogentetraoxide partially decomposes according to the following equilibrium:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A 1.00- L flask is charged with 0.0400 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$. At equilibrium at $373 \mathrm{~K}, 0.0055 \mathrm{~mol}$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ remains. Keq for this reaction is \qquad .
A) 2.2×10^{-4}
B) 0.87
C) 0.022
D) 13
E) 0.22

Answer: B
32) At 400 K , the equilibrium constant for the reaction

$$
\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrCl}(\mathrm{~g})
$$

is $\mathrm{K}_{\mathrm{p}}=7.0$. A closed vessel at 400 K is charged with 1.00 atm of $\mathrm{Br}_{2}(\mathrm{~g}), 1.00 \mathrm{~atm}$ of $\mathrm{Cl}_{2}(\mathrm{~g})$, and 2.00 atm of BrCl (g). Use Q to determine which of the statements below is true.
A) The reaction will go to completion since there are equal amounts of Br_{2} and Cl_{2}.
B) The equilibrium partial pressures of $\mathrm{Br}_{2}, \mathrm{Cl}_{2}$, and BrCl will be the same as the initial values.
C) The equilibrium partial pressure of Br_{2} will be greater than 1.00 atm .
D) The equilibrium partial pressure of $\mathrm{BrCl}(\mathrm{g})$ will be greater than 2.00 atm .
E) At equilibrium, the total pressure in the vessel will be less than the initial total pressure.

Answer: D
33) At $27^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}=0.095$ for the equilibrium:

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

A sample of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a closed vessel and allowed to equilibrate. Calculate the equilibrium partial pressure (atm) of ammonia, assuming that some solid $\mathrm{NH}_{4} \mathrm{HS}$ remains.
A) 0.095
B) 0.0049
C) 3.8
D) 0.31
E) 0.052

Answer: D
34) Which of the following expressions is the correct equilibrium- constant expression for the following reaction?

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

A) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}$
B) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{OH}\right.}$
C) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]}$
D) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}$
E) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right.}$

Answer: D
35) Given the following reaction at equilibrium, if $\mathrm{K}_{\mathrm{C}}=6.34 \times 10^{5}$ at $230.0^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}=$ \qquad .
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
A) 6.44×10^{5}
B) 2.62×10^{7}
C) 1.53×10^{4}
D) 3.67×10^{-2}
E) 2.61×10^{6}

Answer: C
36) The value of K_{eq} for the equilibrium

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

is 54.0 at $427^{\circ} \mathrm{C}$. What is the value of K_{eq} for the equilibrium below?

$$
\mathrm{HI}(\mathrm{~g}) \rightleftharpoons 1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{I}_{2}(\mathrm{~g})
$$

A) 0.136
B) 7.35
C) 3.43×10^{-4}
D) 2.92×10^{3}
E) 27

Answer: A
37) At $200^{\circ} \mathrm{C}$, the equilibrium constant $\left(\mathrm{K}_{\mathrm{p}}\right)$ for the reaction below is 2.40×10^{3}.

$$
2 \mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

A closed vessel is charged with 36.1 atm of NO. At equilibrium, the partial pressure of O_{2} is \qquad atm.
A) 17.9
B) 35.7
C) 1.50×10^{-2}
D) 6.00
E) 294

Answer: A
38) Consider the following reaction at equilibrium:

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

Le Châtelier's principle predicts that the moles of H_{2} in the reaction container will increase with \qquad -.
A) some removal of NH_{3} from the reaction vessel (V and T constant)
B) a decrease in the total pressure (T constant)
C) addition of some N_{2} to the reaction vessel (V and T constant)
D) an increase in total pressure by the addition of helium gas (V and T constant)
E) a decrease in the total volume of the reaction vessel (T constant)

Answer: B
39) Of the following equilibria, only \qquad will shift to the right in response to a decrease in volume.
A) $2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightleftharpoons 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
B) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$
C) $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
D) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
E) $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

Answer: D
40) Consider the following reaction at equilibrium:

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-514 \mathrm{~kJ}
$$

Le Châtelier's principle predicts that an increase in temperature will \qquad .
A) increase the partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$
B) increase the partial pressure of CO
C) decrease the value of the equilibrium constant
D) decrease the partial pressure of $\mathrm{CO}_{2}(\mathrm{~g})$
E) increase the value of the equilibrium constant

Answer: C

