1092-2nd Midterm Exam _05/19/21_(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) A Brønsted-Lowry base is defined as a substance that _____. A) increases [H⁺] when placed in H₂O B) decreases [H+] when placed in H₂O C) acts as a proton acceptor D) acts as a proton donor E) increases [OH-] when placed in H₂O Answer: C 2) Which one of the following is a Brønsted-Lowry base? A) HNO₂ B) CH₃COOH C) HF D) (CH₃)₃N E) none of the above Answer: D 3) The conjugate base of HPO $_4^{2-}$ is _____. A) H₂PO₄-B) PO₄³-C) H₂PO₄ D) H₃PO₄ E) none of the above Answer: B 4) Calculate the pH of a 0.500 M aqueous solution of NH₃. The K_b of NH₃ is 1.77×10^{-5} . D) 2.23 A) 2.53 B) 8.95 C) 11.77 E) 11.47 Answer: E 5) The K_a for some acid HA is 7.0×10^{-4} . What is the pH of a 0.15 M aqueous solution prepared by the salt NaA? A) 5.83 B) 0.82 C) 1.17 D) 5.01 E) 8.17 Answer: E 6) The pH of a 0.25 M aqueous solution of hydrofluoric acid, HF, at 25.0 °C is 2.03. What is the value of Ka for HF? A) 3.6 × 10⁻⁴ B) 2.0 × 10⁻⁹ C) 1.1 × 10⁻⁹ D) 6.0 × 10-5 E) none of the above

Answer: A

7) The acid-dissociati °C. Calculate the p	on constants of sulfur H of a 0.163 M aqueou	ous acid (H ₂ SO ₃) are K _a s solution of sulfurous a	$a_1 = 1.7 \times 10^{-2}$ and $K_{a2} =$	6.4 × 10 ⁻⁸ at 25.0
A) 1.28 Answer: A	B) 6.21	C) 4.53	D) 1.93	E) 1.86
8) Calculate the perce	nt ionization of formic	acid (HCO ₂ H) in a solu	ition that is 0.152 M in for	mic acid. The K _a of
formic acid is $1.8 \times$	10-4.		_	
A) 3.44	B) 8.44	C) 0.0180	D) 2.74 × 10-5	E) 0.581
Answer: A				
9) In which of the foll A) 0.01 M H ₂ CC	owing aqueous solution $P_3 (K_a = 4.5 \times 10^{-7})$	ns does the weak acid e	xhibit the highest percent	age ionization?
B) 0.01 M HOCI	$(K_a = 3.5 \times 10^{-8})$			
C) 0.01 M HCN	(K _a = 6.2 × 10-10)			
D) 0.01 M HC ₃ H	$_5O_2$ (K _a = 1.3 × 10 ⁻⁵)			
E) 0.01 M H ₂ SO	3 (K _a = 1.4 × 10-2)			
Answer: E				
10) Of the following su	ibstances, an aqueous	solution of wil	I form <u>basic</u> solutions.	
NH4Br	Pb(NO ₃) ₂ K ₂ C	O3 NaF		
A) K ₂ CO ₃ , NH ₄ B) NH ₄ Br only C) NaF, K ₂ CO ₃ D) NaF only E) NH ₄ Br, Pb(N Answer: C	Br O ₃) ₂			
11) For which salt shou	ild the aqueous solubi	lity be most sensitive to	nH?	
A) MgI ₂	B) MgCl ₂	C) MgF ₂	D) Mg(NO ₃) ₂	E) MgBr ₂
Answer: C				
12) Which of the follow	ving acids will be the s	trongest?		
A) H ₂ SeO ₄	B) H ₂ SO ₄	C) HSO3-	D) HSO ₄ -	E) H ₂ SO ₃
Answer: B				
13) A solution containi A) KBr, HBr B) Nal, HI C) CsF, HF D) RbCl, HCl E) none of the at Answer: C	ng which one of the fo	llowing pairs of substan	ices will be a buffer solution	on?

- 14) What change will be caused by addition of a small amount of HCI to a solution containing0.1 M fluoride ions and 0.1 M hydrogen fluoride?
 - A) The concentration of hydronium ions will increase significantly.
 - B) The concentration of fluoride ions will increase as will the concentration of hydronium ions.
 - C) The concentration of fluoride ion will decrease and the concentration of hydrogen fluoride will increase.
 - D) The fluoride ions will precipitate out of solution as its acid salt.

E) The concentration of hydrogen fluoride will decrease and the concentration of fluoride ions will increase. Answer: C

15) Which solution would have the greatest buffering capacity?

A) 1.15 M HF and 0.624 M NaF

- B) 0.574 M HF and 0.312 M NaF
- C) 0.287 M HF and 0.156 M NaF

D) 0.189 M HF and 0.103 M NaF

E) They are all buffer solutions and would all have the same capacity.

Answer: A

16) The K_a of some weak acid HA is 1.76×10^{-5} . The pH of a buffer prepared by combining 15.0 mL of 1.00 M A⁻ and 50.0 mL of 1.00 M HA is ______.

 A) 0.851
 B) 1.705
 C) 3.406
 D) 4.232
 E) 2.383

 Answer: D

- 17) 1.A 25.0 mL sample of 0.150 M acetic acid is titrated with a 0.150 M NaOH solution. What is the pH at the equivalence point? The K_a of acetic acid is 1.8×10^{-5} .
 - A) 11.74 B) 9.26 C) 8.81 D) 7.00 E) 4.74 Answer: C

18) A 50.0 mL sample of an aqueous H₂SO₄ solution is titrated with a 0.375 M NaOH solution. The complete neutralization is reached with 62.5 mL of the base. The concentration of H₂SO₄ is _____ M.
A) 0.469 B) 0.300 C) 0.938 D) 0.234 E) 0.150 Answer: D

- 19) Use the information below to answer the question below:
 - methyl orange: red at pH < 3.1: orange at pH 3.1-4.4
 - litmus: red at pH < 4.5: purple at pH 4.5-8.3: blue above pH 8.3
 - thymol blue: yellow at pH < 8.0: green at pH 8.0-9.6: blue above pH 9.6
 - trinitrobenzene: colorless at pH < 12: yellow at pH 12.0-1: orange above pH 14.0
 - Which of the pH indicators from the list above would be most appropriate for the titration of 0.30 M acetic acid ($K_a = 1.8 \times 10^{-5}$) with 0.15 M sodium hydroxide?
 - A) litmus
 - B) trinitrobenzene
 - C) thymol blue
 - D) methyl orange
 - E) Both thymol blue and trinitrobenzene can be used.

Answer: C

20) A solution contains 1.0 : precipitation observed?A) only AgClC) both AgCl and Pb	x 10 ⁻² M Ag+ and 2 (AgCI K _{SP} = 1.8 x 10 Cl ₂	.0 x 10 ⁻² M Pb ²⁺ . Whe o ⁻¹⁰ , PbCl ₂ K _{sp} = 1.7 x B) on D) no	n the concentration of C (10 ⁻⁵) ly PbCl ₂ precipitate	I- is 2 x 10 ⁻⁵ M, is
Answer: A				
21) Which one of the follow A) Ca(OH) ₂ Answer: A	ring is <u>not</u> amphoter B) Cr(OH)3	ic? C) Zn(OH) ₂	D) Sn(OH) ₂	E) AI(OH) ₃
22) The molar solubility of . A) Na ₃ PO ₄ Answer: E	is not affec B) MnS	ted by the pH of the so C) AICI3	lution. D) NaF	E) KNO3
23) The solubility of manga	nese (II) hydroxide ((Mn(OH) ₂) is 2.2 × 10 ⁻⁵	⁵ M. What is the K _{sp} of	Mn(OH) ₂ ?
A) 4.8 × 10-10 Answer: B	B) 4.3 × 10-14	C) 2.2 × 10-5	D) 1.1 × 10-14	E) 2.1 × 10-14
24) Which compound listed A) CaF_2 ($K_{Sp} = 3.9$ B) $Cd(OH)_2$ ($K_{Sp} =$ C) AgI ($K_{Sp} = 8.3 \times$ D) $ZnCO_3$ ($K_{Sp} = 1.2$ E) $CdCO_3$ ($K_{Sp} = 5.2$ Answer: C	l below has the smal × 10-11) 2.5 × 10-14) 10-17) 4 × 10-11) 2 × 10-12)	lest molar solubility in	water?	
25) In which of the followin PbCl ₂ is 1.7×10^{-5})	ng aqueous solutions	would you expect Pb0	Cl ₂ to have the lowest so	olubility? (The K _{sp} of

A) 0.020 M Pb(NO₃)₂ B) pure water C) 0.020 M KCI D) 0.020 M BaCl₂ E) 0.020 M NaCI Answer: D

26) The thermodynamic quantity that expresses the extent of randomness in a system is ______.

A) heat flowB) bond energyC) enthalpyD) internal energyE) entropy

Answer: E

27) Place the following in order of increasing entropy at 298 K.

Ne Xe He Ar A) Ar < Ne < Xe < Kr < He B) He < Ne < Ar < Kr < Xe C) Xe < Kr < Ar < Ne < He D) He < Kr < Ne < Ar < Xe E) Ar < He < Ar < Ne < KrAnswer: B

28) Which one of the following processes produces a decrease of the entropy of the system?

Kr

A) dissolving sodium chloride in water

B) boiling of alcohol

C) sublimation of naphthalene

D) explosion of nitroglycerine

E) dissolving oxygen in water

Answer: E

29) ΔS is positive for the reaction _____.

A) HCI (g) + NH₃ (g) \rightarrow NH₄CI (s)

B) $Pb^{2+}(aq) + 2CI^{-}(aq) \rightarrow PbCI_{2}(s)$

C) CO₂ (g) \rightarrow CO₂ (s)

D) 2 Ca (s) + O₂ (g) →2 CaO (s)

E) 2 KCIO₃ (s) \rightarrow 2KCI (s) + 3 O₂ (g)

Answer: E

30) For an isothermal process, the entropy change of the surroundings is given by the equation:

A) $\Delta S = -q_{SVS} / T$ B) $\Delta S = -q_{SVS} T$ C) $\Delta S = q_{SVS} T$ D) $\Delta S = -q \ln T$ E) $\Delta S = q InT$ Answer: A

31) Of the following, only _____ is <u>not</u> a state function. A) H B) S C) q C) q D) E E) T Answer: C

32) For the reaction

 $C_2H_6(g) \rightarrow C_2H_4(g) + H_2(g)$

Δ H° is +137 kJ/mol and Δ S° is +120 J/K · mol. This rea	action is
A) nonspontaneous at all temperatures	B) spontaneous at all temperatures
C) spontaneous only at low temperature	 D) spontaneous only at high temperature
Answer: D	

33) What is the value of ΔS° for the formation of POCI₃ from its constituent elements,?

 $P_2(g) + O_2(g) + 3CI_2(g) \rightarrow 2POCI_3(g)$

Substance	$\Delta H^{\circ}f(kJ/mol)$	ΔG°_{f} (kJ/mol)	S° (J/K-mol)		
Cl ₂ (g)	0	0	222.96		
O ₂ (g)	0	0	205.0		
P ₂ (g)	144.3	103.7	218.1		
POCI ₃ (g)	-542.2	-502.5	325		
A) +321.0	B) -771.0	C) +771	.0	D) -442.0	E) -321.0
nswer: D					

Thermodynamic Quantities for Selected Substances at 298.15 K (25 °C)

34) Which of the following statements is true?

A) Processes are spontaneous because they occur at an observable rate.

B) Processes that are spontaneous in one direction are spontaneous in the opposite direction.

C) Spontaneity can depend on the temperature.

D) All of the statements are true.

Answer: C

- 35) Which one of the following statements is true about the equilibrium constant for a reaction if ΔG° for the reaction is negative?
 - A) K < 1
 - B) K = 0
 - C) K = 1
 - D) K > 1

E) More information is needed.

Answer: D

36) The standard Gibbs free energy of formation of _____ is zero.

(a) H₂O (I) (b) Fe (s) (c) I₂(s) A) (a) only B) (b) only C) (c) only D) (b) and (c)

E) (a), (b), and (c)

Answer: D

37) Calculate ΔG_{rxn} at 298 K under the conditions shown below for the following reaction. (R: 8.314 J/mol \cdot K)

3 O ₂ (g) →2 O	D ₃ (g)	$\Delta G^{\circ} = +326 \text{ kJ}$		
P(O ₂) = 0.41	atm, P(O3) = 5.2 atm			
A) +341 kJ Answer: A	B) +332 kJ	C) -109 kJ	D) +17.8 kJ	E) -47.4 kJ
 38) The Gibbs energy cha A) endothermic B) exothermic C) nonspontaneou D) irreversible E) spontaneous Answer: E 	ange for a reaction is s	-298 kJ. The reaction is	therefore:	

39) Which of the following reactions will have the largest equilibrium constant (K) at 298 K?

A) 2 Hg(g) + O ₂ (g) \rightarrow 2 HgO(s)	∆G° = -180.8 kJ			
B) $Fe_2O_3(s) + 3 CO(g) \rightarrow 2 Fe(s) + 3 CO_2(g)$	ΔG° = -28.0 kJ			
C) 3 O ₂ (g) →2 O ₃ (g)	ΔG° = +326 kJ			
D) CaCO ₃ (s) →CaO(s) + CO ₂ (g)	ΔG° =+131.1 kJ			
E) It is not possible to determine without more information.				

Answer: A

40) Given the thermodynamic data in the table below, calculate the equilibrium constant (at 298 K) for the reaction: (R: $8.314 \text{ J/mol} \cdot \text{K}$)

2 SO₂ (g) + O₂ (g) = 2 SO₃ (g)

SO ₂ (g)	-297	249
O ₂ (g)	0	205
SO ₃ (g)	- 395	256

A) 2.40 × 10²⁴ B) 1.06 C) 3.82 × 10²³ D) 1.95 E) More data are needed.

Answer: A