1092-1st Midterm Exam_04/14/21_(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

 The vapor pressure of pure ethanol at 333 K is 0.459 atm. Raoult's Law predicts that a solution prepared by dissolving 10.0 mmol naphthalene (nonvolatile) in 90.0 mmol ethanol will have a vapor pressure of atm.

uun				
A) 0.367	B) 0.413	C) 0.0918	D) 0.498	E) 0.790
Answer: B				
•		ammonium chloride has a olution? The formula weig	5 0	
A) 0.0955	B) 4.79	C) 24.00	D) 0.223	E) 5.90
Answer: E				
3) The osmotic pressu	ure of a solution form	ed by dissolving 85.0 mg	of aspirin (C9H8O4) in 0.250 L of water at
25 °C is	_atm. (R = 0.0821 L	atm / mol-K)		
A) 0.0462	B) 4.68	C) 3.88 × 10 ⁻³	D) 46.2	E) 8.32

Answer: A

- 4) The ratio of the actual value of a colligative property to the value calculated, assuming the substance to be a nonelectrolyte, is referred to as ______.
 - A) vapor pressure lowering
 - B) freezing point depression
 - C) osmotic pressure
 - D) Henry's law
 - E) the van't Hoff factor

Answer: E

5) Which one of the following substances is more likely to dissolve in CCI₄?

- A) HCI
- B) NaCl
- C) HBr
- D) CH₃CH₂OH
- E) CBr₄

Answer: E

6) A solution contains 15 ppm of benzene. The density of the solution is 1.00 g/mL. This means that

A) 100 g of the solution contains 15 mg of benzene

- B) the solution is 15% by mass of benzene
- C) the molarity of the solution is 15
- D) there are 15 mg of benzene in 1.0 L of this solution
- E) 100 g of the solution contains 15 g of benzene

Answer: D

 The concentration of sodium chloride in an aqueous solution that is 2.02 M and that has a density of 1.01 g/mL is _____% by mass.

A) 7.83	B) 2.01	C) 118	D) 11.7	E) 18.1
Answer: D				

8) A solution containin $K_{f} = 1.86^{\circ}C/m$ for w	ng 15.0 g of an unknow /ater, the molar mass o		• •	int of -3.33 °C. Given
A) 333	B) 69.0	C) 93.0		E) 619
Answer: C				
9) The concentration of molal.	f HCI in a solution that	is prepared by dissoly	ving 11 g of HCl in 20	00 g of C ₂ H ₆ O is
	B) 3.3 × 10-2	C) 7.5 × 10-4	D) 1.3	E) 1.5
molal-freezing-poir	ed by dissolving 6.50 g solution is nt-depression constant /mol and 46.1 g/mol, ro	_°C. The freezing poin (K _f) for ethanol is 1.9	t of pure ethanol is -1 9 °C/m. The molar ma	114.6 °C at 1 atm. The asses of glycerin and
A) 0.699 Answer: E	B) -120.8	C) -108.4	D) -113.9	E) -115.3
11) A solution is prepar is 0.974 g/mL. The m	ed by dissolving 13.0 g nole fraction of NH3 in			the resulting solution
A) 16.8	B) 0.0522	C) 0.940	D) 0.922	E) 0.0520
Answer: B, E				
A) solids and liqu B) gases C) salts D) liquids E) solids Answer: B	lids			
13) Calculate the freezir	• •	•	JaNO3. The molal	
	ression constant of wat		\mathbf{D} 0.10(F) 0.00F
A) -0.0562 Answer: E	B) -0.106	C) 0.0286	D) 0.106	E) -0.205
14) Of the concentration				
A) molality	B) mass %	C) molarity	D) ppm	E) ppb
Answer: C				
15) The rate constant fors for the	r a reaction is 0.13 M ⁻¹ concentration to decre		entration of reactant i	s 0.26 mol/L, it takes
A) 0.017	B) 9.1	C) 5.2	D) 0.68	E) 40.
Answer: E				
 16) A reaction was foun reaction rate to A) increase by a fabric B) remain constant C) triple D) decrease by a fabric by a fabric	 actor of 9	-	ntration of A by a fac	tor of 3 will cause the

D) decrease by a factor of the cube root of 3E) increase by a factor of 27

Answer: B

The peroxydisulfate ion ($S_2O_8^{2-}$) reacts with the iodide ion in aqueous solution via the reaction:

 $S_2O_8^{2-}$ (aq) + 31⁻ \rightarrow 2SO₄ (aq) + 13⁻ (aq)

An aqueous solution containing 0.050 M of $S_2O_8^{2-}$ ion and 0.072 M of I^- is prepared, and the progress of the reaction followed by measuring $[I^-]$. The data obtained is given in the table below.

	Time (s)	0.000	400.0	800.0	1200.0	1600.0		
	[I ⁻] (M)	0.072	0.057	0.046	0.037	0.029		
17) The concentration o			1400					
(7) The concentration of	n 32082 Tem	anning a	t 1600 s i	S	M.			
A) 0.029	B) 0.064	anning a		s 0.014	M.	D) 0.04	13 E) ().036

18) At elevated temperatures, methylisonitrile (CH₃NC) isomerizes to acetonitrile (CH₃CN):

 $CH_3NC(g) \rightarrow CH_3CN(g)$

The dependence of the rate constant on temperature is studied and the graph below is prepared from the res

A flask is charged with 0.124 mol of A and allowed to react to form B according to the reaction $A(g) \rightarrow B(g)$. The following data are obtained for [A] as the reaction proceeds:

	Time (s) Moles of A	0.00 0.124	10.0 0.110	20.0 0.088	30.0 0.073	40.0 0.054	
19) The average rate of dis A) 1.4 × 10 ⁻³ Answer: B	appearance of B) 1.7 × 10-3			and 40 5 × 10-		mol/s D) 7.1 × 10-	
20) If the rate law for the re	eaction						
2A + 3B → p	products						
is first order in A and s A) k[A][B] Answer: D	econd order in B) k[A] ² [B] ³			e law is A] ² [B] ²	_	 D) k[A][B] ²	E) k[A] ² [B]

21) Which one of the following graphs shows the correct relationship between concentration and time for a reaction that is second order in [A]?

22) The reaction

 $2NO_2 \rightarrow 2NO + O_2$

 follows second-order kinetics. At 300 °C, [NO2] drops from 0.0100 M to 0.00650 M in 100.0 s. The rate

 constant for the reaction is ______M⁻¹s⁻¹.

 A) 0.096
 B) 0.54
 C) 0.65
 D) 0.81
 E) 1.2

 Answer: B

23) At elevated temperatures, dinitrogen pentoxide decomposes to nitrogen dioxide and oxygen:

 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

When the rate of formation of NO₂ is 5.5×10^{-4} M/s, the rate of decomposition of N₂O₅ is _____ M/s. A) 10.1×10^{-4} B) 5.5×10^{-4} C) 2.8×10^{-4} D) 1.4×10^{-4} E) 2.2×10^{-3} Answer: C

24) A particular first-order reaction has a rate constant of 1.35×10^2 s⁻¹ at 25.0 °C. What is the magnitude of k at 75.0 °C if E_a = 75.5 kJ/mol?

A) 3.40×10^{6} B) 1.36×10^{2} C) 1.08×10^{4} D) 3.06×10^{4} E) 591 Answer: C

25) The isomerization of methylisonitrile to acetonitrile

 CH_3NC (g) $\rightarrow CH_3CN$ (g)

is first order in CH₃NC. The rate constant for the reaction is $3.22 \times 10^{-4} \text{ s}^{-1}$ at 493 K. The half-life of the reaction when the initial [CH₃NC] is 0.030 M is ______ s.

A) 1.04×10^5 B) 2.15×10^3 C) 1.55×10^3 D) 4.64×10^{-4} E) 3.11×10^3 Answer: B

The data in the table below were obtained for the reaction:

 $A + B \rightarrow P$

Experiment			Initial Rate		
Number	[A] (M)	[B] (M)	(M/s)		
1	0.273	0.763	2.83		
2	0.273	1.526	2.83		
3	0.819	0.763	25.47		
26) The magni A) 42.0	tude of th	he rate co B) 1		 D) 38.0	E) 2.21

Answer: D

27) Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction:

 $2NO_2 \rightarrow 2NO + O_2$

In a particular experiment at 300 $^{\circ}$ C, [NO₂] drops from 0.0100 to 0.00750 M in 100 s. The rate of appearance of O₂ for this period is _____ M/s.

A) 2.5×10^{-5} B) 5.0×10^{-3} C) 2.5×10^{-3} D) 1.3×10^{-5} E) 5.0×10^{-5} Answer: D

28) The combustion of ethylene proceeds by the reaction

 $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$

When the rate of disappearance of O_2 is 0.33 M s⁻¹, the rate of appearance of CO_2 is _____ M s⁻¹.A) 0.50B) 0.99C) 0.66D) 0.11E) 0.22Answer: E

29) Given the following reaction at equilibrium at 300.0 K:

 NH_4HS (s) \implies NH_3 (g) + H_2S (g)

If $pNH_3 = pH_2S = 0.111$ atm, $K_p =$ _____. A) 5.66 x 10⁻³ B) .0123 C) 4.99 x 10⁻⁴ D) .0821 E) .111 Answer: B 30) Given the following reaction at equilibrium, if $K_c = 5.84 \times 10^5$ at 230.0 °C, $K_p =$ ______.

$$2NO(g) + O_2(g) \implies 2NO_2(g)$$

A) 2.40 x 10⁶ B) 1.41 x 10⁴ C) 2.41 x 10⁷ D) 3.67 x 10⁻² E) 6.44 x 10⁵ Answer: B

31) The value of ${\rm K}_{eq}$ for the equilibrium

 $N_2(g) + O_2(g) \implies 2 NO(g)$

is 4.2 x 10⁻³¹ at 27 °C. What is the value of K_{eq} for the equilibrium below?

A) 8.4×10^{-31} B) 4.2×10^{31} C) 8.4×10^{31} D) 5.7×10^{60} E) none of the above Answer: D

32) Which of the following expressions is the correct equilibrium-constant expression for the following reaction ?

CO₂ (g) + 2H₂ (g)
$$\rightleftharpoons$$
 CH₃OH (g)

A)
$$\frac{[CH_{3}OH]}{[CO_{2}][H_{2}]}$$

B)
$$\frac{[CO_{2}][H_{2}]^{2}}{[CH_{3}OH]}$$

C)
$$\frac{[CH_{3}OH]}{[CO_{2}]}$$

D)
$$\frac{[CH_{3}OH]}{[CO_{2}][H_{2}]^{2}}$$

E)
$$\frac{[CO_{2}][H_{2}]}{[CH_{3}OH]}$$

Answer: D

33) Given the following reaction at equilibrium at 450.0 °C:

 $CaCO_3$ (s) \implies CaO (s) + CO₂ (g)

If pCO₂ = 0.0170 atm, K_c = _____. A) 0.0821 B) 10.1 C) 1.01 D) 170 E) 2.86 x 10⁻⁴ Answer: E 34) Consider the following reaction at equilibrium:

 $2CO_2(g) \implies 2CO(g) + O_2(g) \qquad \Delta H^\circ = -514 \text{ kJ}$

Le Châtelier's principle predicts that an increase in temperature will ______.

A) increase the partial pressure of O_2 (g)

- B) decrease the partial pressure of CO₂ (g)
- C) increase the partial pressure of CO
- D) increase the value of the equilibrium constant
- E) decrease the value of the equilibrium constant

Answer: E

35) Dinitrogentetraoxide partially decomposes according to the following equilibrium:

$$N_2O_4$$
 (g) \implies $2NO_2$ (g)

A 1.00-L flask is charged with 0.0400 mol of N_2O_4 . At equilibrium at 100 °C, 0.0055 mol of N_2O_4 remains. K_{eq} for this reaction is _____.

A) 2.2 × 10⁻⁴ B) 0.87 C) 13 D) 0.22 E) 0.022 Answer: B

36) In the coal-gasification process, carbon monoxide is converted to carbon dioxide via the following reaction:

 $CO(g) + H_2O(g) \implies CO_2(g) + H_2(g)$

In an experiment, 0.35 mol of CO and 0.40 mol of H₂O were placed in a 1.00-L reaction vessel. At equilibrium, there were 0.17 mol of CO remaining. K_{eq} at the temperature of the experiment is ______ A) 0.75 B) 5.5 C) 1.2 D) 1.0 E) 0.87 Answer: E

37) Consider the following chemical reaction:

H₂ (g) + I₂ (g) 🛁 2HI (g)

At equilibrium in a particular experiment, the concentrations of H_2 , I_2 , and HI were 0.15 M, 0.033 M, and 0.55 M, respectively. The value of K_{eq} for this reaction is _____.

A) 0.0090	B) 23	C) 61	D) 111	E) 5.1
Answer: C				

38) The expression for K_p for the reaction below is ______

 $4CuO(s) + CH_{4}(g) \rightleftharpoons CO_{2}(g) + 4Cu(s) + 2H_{2}O(g)$ A) $\frac{[Cu] P_{CO_{2}}P_{H_{2}O}^{2}}{[CuO]^{4}P_{CH_{4}}}$ B) $\frac{P_{CO_{2}}P_{H_{2}O}^{2}}{P_{CH_{4}}}$ C) $\frac{P_{CH_{4}}}{P_{H_{2}O}^{2}P_{CO_{2}}}$ D) $\frac{P_{CH_{4}}}{P_{CO_{2}}P_{H_{2}}^{2}}$ E) $\frac{P_{CO_{2}}P_{H_{2}O}^{2}}{P_{CuO}}$ Answer: B

39) The equilibrium expression for K_p for the reaction below is _____.

 $2O_3$ (g) $\implies 3O_2$ (g)

A)
$$\frac{2Po_3}{3Po_2}$$
 B) $\frac{3Po_3}{2Po_2}$ C) $\frac{Po_3^2}{Po_2^2}$ D) $\frac{3Po_2}{2Po_3}$ E) $\frac{Po_2^3}{Po_3^2}$

Answer: E

40) The equilibrium expression for K_p for the reaction below is _____.

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

A)
$$\frac{(Po_2)(PN_2)}{PNO}$$

B) $\frac{(2PNO)}{(2PN_2)(2PO_2)}$
C) $\frac{(Po_2)(PN_2)}{2PNO}$
D) $\frac{(2PO_2)(2PN_2)}{2PNO}$
E) none of the above

Answer: E