MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The vapor pressure of pure ethanol at 333 K is 0.459 atm . Raoult's Law predicts that a solution prepared by dissolving 10.0 mmol naphthalene (nonvolatile) in 90.0 mmol ethanol will have a vapor pressure of
\qquad atm.
A) 0.367
B) 0.413
C) 0.0918
D) 0.498
E) 0.790

Answer: B
2) At 293 k , a 4.79 M aqueous solution of ammonium chloride has a density of $1.0674 \mathrm{~g} / \mathrm{mL}$. What is the molality of ammonium chloride in the solution? The formula weight of $\mathrm{NH}_{4} \mathrm{Cl}$ is $53.50 \mathrm{~g} / \mathrm{mol}$.
A) 0.0955
B) 4.79
C) 24.00
D) 0.223
E) 5.90

Answer: E
3) The osmotic pressure of a solution formed by dissolving 85.0 mg of aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ in 0.250 L of water at $25^{\circ} \mathrm{C}$ is \qquad atm. ($\mathrm{R}=0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$)
A) 0.0462
B) 4.68
C) 3.88×10^{-3}
D) 46.2
E) 8.32

Answer: A
4) The ratio of the actual value of a colligative property to the value calculated, assuming the substance to be a nonelectrolyte, is referred to as \qquad -.
A) vapor pressure lowering
B) freezing point depression
C) osmotic pressure
D) Henry's law
E) the van't Hoff factor

Answer: E
5) Which one of the following substances is more likely to dissolve in CCl_{4} ?
A) HCl
B) NaCl
C) HBr
D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
E) CBr_{4}

Answer: E
6) A solution contains 15 ppm of benzene. The density of the solution is $1.00 \mathrm{~g} / \mathrm{mL}$. This means that
\qquad __.
A) 100 g of the solution contains 15 mg of benzene
B) the solution is 15% by mass of benzene
C) the molarity of the solution is 15
D) there are 15 mg of benzene in 1.0 L of this solution
E) 100 g of the solution contains 15 g of benzene

Answer: D
7) The concentration of sodium chloride in an aqueous solution that is 2.02 M and that has a density of 1.01 g / mL is \qquad \% by mass.
A) 7.83
B) 2.01
C) 118
D) 11.7
E) 18.1

Answer: D
8) A solution containing 15.0 g of an unknown liquid and 90.0 g water has a freezing point of $-3.33^{\circ} \mathrm{C}$. Given $\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}$ for water, the molar mass of the unknown liquid is \qquad $\mathrm{g} / \mathrm{mol}$.
A) 333
B) 69.0
C) 93.0
D) 161
E) 619

Answer: C
9) The concentration of HCl in a solution that is prepared by dissolving 11 g of HCl in 200 g of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ is
\qquad molal.
A) 27.5
B) 3.3×10^{-2}
C) 7.5×10^{-4}
D) 1.3
E) 1.5

Answer: E
10) A solution is prepared by dissolving 6.50 g of glycerin $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ in 201 g of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$. The freezing point of the solution is \qquad ${ }^{\circ} \mathrm{C}$. The freezing point of pure ethanol is $-114.6^{\circ} \mathrm{C}$ at 1 atm . The molal- freezing-point- depression constant $\left(\mathrm{K}_{\mathrm{f}}\right)$ for ethanol is $1.99^{\circ} \mathrm{C} / \mathrm{m}$. The molar masses of glycerin and of ethanol are $92.1 \mathrm{~g} / \mathrm{mol}$ and $46.1 \mathrm{~g} / \mathrm{mol}$, respectively.
A) 0.699
B) -120.8
C) -108.4
D) -113.9
E) -115.3

Answer: E
11) A solution is prepared by dissolving 13.0 g of NH_{3} in 250.0 g of water. The density of the resulting solution is $0.974 \mathrm{~g} / \mathrm{mL}$. The mole fraction of NH_{3} in the solution is \qquad .
A) 16.8
B) 0.0522
C) 0.940
D) 0.922
E) 0.0520

Answer: B, E
12) Pressure has an appreciable effect on the solubility of \qquad in liquids.
A) solids and liquids
B) gases
C) salts
D) liquids
E) solids

Answer: B
13) Calculate the freezing point of a 0.05500 m aqueous solution of NaNO_{3}. The molal
freezing- point-depression constant of water is $1.86^{\circ} \mathrm{C} / \mathrm{m}$.
A) -0.0562
B) -0.106
C) 0.0286
D) 0.106
E) -0.205

Answer: E
14) Of the concentration units below, only \qquad is temperature dependent.
A) molality
B) mass \%
C) molarity
D) ppm
E) ppb

Answer: C
15) The rate constant for a reaction is $0.13 \mathrm{M}^{-1} 1_{\mathrm{S}}-1$. If the initial concentration of reactant is $0.26 \mathrm{~mol} / \mathrm{L}$, it takes
\qquad s for the concentration to decrease to $0.11 \mathrm{~mol} / \mathrm{L}$.
A) 0.017
B) 9.1
C) 5.2
D) 0.68
E) 40 .

Answer: E
16) A reaction was found to be zero order in A. Increasing the concentration of A by a factor of 3 will cause the reaction rate to \qquad _.
A) increase by a factor of 9
B) remain constant
C) triple
D) decrease by a factor of the cube root of 3
E) increase by a factor of 27

Answer: B

The peroxydisulfate ion $\left(\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right)$ reacts with the iodide ion in aqueous solution via the reaction:

$$
\mathrm{S}_{2} \mathrm{O}_{8^{2-}}(\mathrm{aq})+3 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{I}_{3}^{-}(\mathrm{aq})
$$

An aqueous solution containing 0.050 M of $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ ion and 0.072 M of I^{-}is prepared, and the progress of the reaction followed by measuring $\left[\mathrm{I}^{-}\right]$. The data obtained is given in the table below.

Time (s)	0.000	400.0	800.0	1200.0	1600.0
$\left[\mathrm{I}^{-}\right](\mathrm{M})$	0.072	0.057	0.046	0.037	0.029

17) The concentration of $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ remaining at 1600 s is \qquad M.
A) 0.029
B) 0.064
C) 0.014
D) 0.043
E) 0.036

Answer: E
18) At elevated temperatures, methylisonitrile $\left(\mathrm{CH}_{3} \mathrm{NC}\right)$ isomerizes to acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$:

$$
\mathrm{CH}_{3} \mathrm{NC}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CN}(\mathrm{~g})
$$

The dependence of the rate constant on temperature is studied and the graph below is prepared from the res

The energy of activation of this reaction is \qquad $\mathrm{kJ} / \mathrm{mol}$.
A) 4.4×10^{-7}
B) 4.4×10^{-4}
C) 1.9×10^{4}
D) 160
E) 1.6×10^{5}

Answer: D

A flask is charged with 0.124 mol of A and allowed to react to form B according to the reaction $\mathrm{A}(\mathrm{g}) \rightarrow \mathrm{B}(\mathrm{g})$. The following data are obtained for $[\mathrm{A}]$ as the reaction proceeds:

Time (s)	0.00	10.0	20.0	30.0	40.0
Moles of A	0.124	0.110	0.088	0.073	0.054

19) The average rate of disappearance of A between 20 s and 40 s is \qquad $\mathrm{mol} / \mathrm{s}$.
A) 1.4×10^{-3}
B) 1.7×10^{-3}
C) 8.5×10^{-4}
D) 7.1×10^{-3}
E) 590

Answer: B
20) If the rate law for the reaction

$$
2 \mathrm{~A}+3 \mathrm{~B} \rightarrow \text { products }
$$

is first order in A and second order in B, then the rate law is rate $=$ \qquad -.
A) $k[A][B]$
B) $\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{3}$
C) $k[A]^{2}[B]^{2}$
D) $\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
E) $k[A]^{2}[B]$

Answer: D
21) Which one of the following graphs shows the correct relationship between concentration and time for a reaction that is second order in $[\mathrm{A}]$?
A)

B)

C)

D)
[A]

E)

Answer: A
22) The reaction

$$
2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}
$$

follows second- order kinetics. At $300{ }^{\circ} \mathrm{C},\left[\mathrm{NO}_{2}\right]$ drops from 0.0100 M to 0.00650 M in 100.0 s . The rate constant for the reaction is \qquad $\mathrm{M}^{-1} \mathrm{~S}^{-1}$.
A) 0.096
B) 0.54
C) 0.65
D) 0.81
E) 1.2

Answer: B
23) At elevated temperatures, dinitrogen pentoxide decomposes to nitrogen dioxide and oxygen:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

When the rate of formation of NO_{2} is $5.5 \times 10^{-4} \mathrm{M} /$ s, the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is \qquad M/s.
A) 10.1×10^{-4}
B) 5.5×10^{-4}
C) 2.8×10^{-4}
D) 1.4×10^{-4}
E) 2.2×10^{-3}

Answer: C
24) A particular first- order reaction has a rate constant of $1.35 \times 10^{2} \mathrm{~s}^{-1}$ at $25.0^{\circ} \mathrm{C}$. What is the magnitude of k at $75.0^{\circ} \mathrm{C}$ if $\mathrm{E}_{\mathrm{a}}=75.5 \mathrm{~kJ} / \mathrm{mol}$?
A) 3.40×10^{6}
B) 1.36×10^{2}
C) 1.08×10^{4}
D) 3.06×10^{4}
E) 591

Answer: C
25) The isomerization of methylisonitrile to acetonitrile

$$
\mathrm{CH}_{3} \mathrm{NC}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CN}(\mathrm{~g})
$$

is first order in $\mathrm{CH}_{3} \mathrm{NC}$. The rate constant for the reaction is $3.22 \times 10^{-4} \mathrm{~s}^{-1}$ at 493 K . The half- life of the reaction when the initial $\left[\mathrm{CH}_{3} \mathrm{NC}\right]$ is 0.030 M is \qquad s.
A) 1.04×10^{5}
B) 2.15×10^{3}
C) 1.55×10^{3}
D) 4.64×10^{-4}
E) 3.11×10^{3}

Answer: B

The data in the table below were obtained for the reaction:

$$
A+B \rightarrow P
$$

Experiment Number	$[\mathrm{A}](\mathrm{M})$	$[\mathrm{B}](\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

26) The magnitude of the rate constant is \qquad .
A) 42.0
B) 13.2
C) 0.278
D) 38.0
E) 2.21

Answer: D

27) Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction:

$$
2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}
$$

In a particular experiment at $300^{\circ} \mathrm{C},\left[\mathrm{NO}_{2}\right]$ drops from 0.0100 to 0.00750 M in 100 s . The rate of appearance of O_{2} for this period is \qquad M/s.
A) 2.5×10^{-5}
B) 5.0×10^{-3}
C) 2.5×10^{-3}
D) $1.3 \times 10-5$
E) 5.0×10^{-5}

Answer: D
28) The combustion of ethylene proceeds by the reaction

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

When the rate of disappearance of O_{2} is $0.33 \mathrm{M} \mathrm{s}^{-1}$, the rate of appearance of CO_{2} is \qquad Ms^{-1}.
A) 0.50
B) 0.99
C) 0.66
D) 0.11
E) 0.22

Answer: E
29) Given the following reaction at equilibrium at 300.0 K :

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

If $\mathrm{pNH}_{3}=\mathrm{pH}_{2} \mathrm{~S}=0.111 \mathrm{~atm}, \mathrm{~K}_{\mathrm{p}}=$ \qquad _.
A) 5.66×10^{-3}
B) .0123
C) 4.99×10^{-4}
D) .0821
E) .111

Answer: B
30) Given the following reaction at equilibrium, if $\mathrm{K}_{\mathrm{C}}=5.84 \times 10^{5}$ at $230.0^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}=$ \qquad .

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A) 2.40×10^{6}
B) 1.41×10^{4}
C) 2.41×10^{7}
D) 3.67×10^{-2}
E) 6.44×10^{5}

Answer: B
31) The value of $K_{e q}$ for the equilibrium

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

is 4.2×10^{-31} at $27^{\circ} \mathrm{C}$. What is the value of K_{eq} for the equilibrium below?

$$
4 \mathrm{NO}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})
$$

A) 8.4×10^{-31}
B) 4.2×10^{31}
C) 8.4×10^{31}
D) 5.7×1060
E) none of the above

Answer: D
32) Which of the following expressions is the correct equilibrium- constant expression for the following reaction?

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

A) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}$
B) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
C) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]}$
D) $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{2}}$
E) $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$

Answer: D
33) Given the following reaction at equilibrium at $450.0^{\circ} \mathrm{C}$:

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

If $\mathrm{pCO}_{2}=0.0170 \mathrm{~atm}, \mathrm{~K}_{\mathrm{C}}=$ \qquad .
A) 0.0821
B) 10.1
C) 1.01
D) 170
E) 2.86×10^{-4}

Answer: E
34) Consider the following reaction at equilibrium:

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-514 \mathrm{~kJ}
$$

Le Châtelier's principle predicts that an increase in temperature will \qquad -
A) increase the partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$
B) decrease the partial pressure of $\mathrm{CO}_{2}(\mathrm{~g})$
C) increase the partial pressure of CO
D) increase the value of the equilibrium constant
E) decrease the value of the equilibrium constant

Answer: E
35) Dinitrogentetraoxide partially decomposes according to the following equilibrium:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A 1.00-L flask is charged with 0.0400 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$. At equilibrium at $100^{\circ} \mathrm{C}, 0.0055 \mathrm{~mol}$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ remains. K_{eq} for this reaction is \qquad -
A) 2.2×10^{-4}
B) 0.87
C) 13
D) 0.22
E) 0.022

Answer: B

36) In the coal-gasification process, carbon monoxide is converted to carbon dioxide via the following reaction:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

In an experiment, 0.35 mol of CO and 0.40 mol of $\mathrm{H}_{2} \mathrm{O}$ were placed in a $1.00-\mathrm{L}$ reaction vessel. At equilibrium, there were 0.17 mol of CO remaining. K_{eq} at the temperature of the experiment is \qquad
A) 0.75
B) 5.5
C) 1.2
D) 1.0
E) 0.87

Answer: E
37) Consider the following chemical reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

At equilibrium in a particular experiment, the concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI were $0.15 \mathrm{M}, 0.033 \mathrm{M}$, and 0.55 M , respectively. The value of K_{eq} for this reaction is \qquad -
A) 0.0090
B) 23
C) 61
D) 111
E) 5.1

Answer: C

38) The expression for K_{p} for the reaction below is \qquad .

$$
4 \mathrm{CuO}(\mathrm{~s})+\mathrm{CH}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{Cu}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A) $\frac{[\mathrm{Cu}] \mathrm{PCO}_{2} \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}{ }^{2}}{[\mathrm{CuO}]^{4} \mathrm{P}_{\mathrm{CH}}}$
B) $\frac{\mathrm{PCO}_{2} \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}{ }^{2}}{\mathrm{P}_{\mathrm{CH}_{4}}}$
C) $\frac{\mathrm{PCH}_{4}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}^{2} \mathrm{PCO}_{2}}}$
D) $\frac{\mathrm{PCH}_{4}}{\mathrm{P}_{\mathrm{CO}}^{2}} \mathrm{P}_{\mathrm{H}_{2}}{ }^{2}$
E) $\frac{\mathrm{PCO}_{2} \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}^{2}}}{\mathrm{P}_{\mathrm{CuO}}}$

Answer: B
39) The equilibrium expression for K_{p} for the reaction below is \qquad -.

$$
2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g})
$$

A) $\frac{2 \mathrm{PO}_{3}}{3 \mathrm{PO}_{2}}$
B) $\frac{3 \mathrm{PO}_{3}}{2 \mathrm{PO}_{2}}$
C) $\frac{\mathrm{PO}_{3}{ }^{2}}{\mathrm{PO}_{2}{ }^{2}}$
D) $\frac{3 P_{O_{2}}}{2 P_{O_{3}}}$
E) $\frac{\mathrm{PO}_{2}{ }^{3}}{\mathrm{PO}_{3}{ }^{2}}$

Answer: E
40) The equilibrium expression for K_{p} for the reaction below is \qquad -

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

A) $\frac{\left(P_{O_{2}}\right)\left(P_{N_{2}}\right)}{P_{\mathrm{NO}}}$
B) $\frac{\left(2 P_{\mathrm{NO}}\right)}{\left(2 P_{\mathrm{N}_{2}}\right)\left(2 \mathrm{PO}_{2}\right)}$
C) $\frac{\left(\mathrm{PO}_{2}\right)\left(P_{N_{2}}\right)}{2 P_{\mathrm{NO}}}$
D) $\frac{\left(2 P_{O_{2}}\right)\left(2 P_{N_{2}}\right)}{2 P_{\mathrm{NO}}}$
E) none of the above

Answer: E

