1091 2nd Midterm Exam _12/09/20 (A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Screening of the nuclear charge by core electrons in atoms is ______.

- A) less efficient than that by valence electrons
- B) more efficient than that by valence electrons
- C) responsible for a general decrease in atomic radius going down a group
- D) essentially identical to that by valence electrons
- E) <u>both</u> essentially identical to that by valence electrons <u>and</u> responsible for a general decrease in atomic radius going down a group

Answer: B

- 2) Atomic radius generally increases as we move _____
 - A) up a group and from right to left across a period
 - B) down a group and from left to right across a period
 - C) down a group; the period position has no effect
 - D) up a group and from left to right across a period
 - E) down a group and from right to left across a period

Answer: E

3) Of the following, which gives the correct order for atomic radius for Ca, K, As, Ge and Kr?

A) Kr > Ge > As > K > CaB) K > Ca > Ge > As > KrC) Ge > As > Kr > K > CaD) Ca > K > As > Ge > KrE) Kr > As > Ge > Ca > K

Answer: B

4) Which isoelectronic series is correctly arranged in order of increasing radius?

A) $Cl^- < Ar < K^+ < Ca^{2+}$ B) $Ca^{2+} < K^+ < Cl^- < Ar$ C) $Ca^{2+} < K^+ < Ar < Cl^-$ D) $Ca^{2+} < Ar < K^+ < Cl^-$ E) $K^+ < Ca^{2+} < Ar < Cl^-$ Answer: C

5) Which of the following correctly represents the <u>second</u> ionization of calcium?

A) $Ca^+(g) + e^- \rightarrow Ca(g)$ B) $Ca^+(g) + e^- \rightarrow Ca^{2+}(g)$ C) $Ca(g) \rightarrow Ca^+(g) + e^-$ D) $Ca^-(g) + e^- \rightarrow Ca^{2-}(g)$ E) $Ca^+(g) \rightarrow Ca^{2+}(g) + e^-$ Answer: E *Consider the following electron configurations to answer the questions that follow:*

(i) $1s^2 2s^2 2p^6 3s^1$ (ii) $1s^2 2s^2 2p^6 3s^2$ (iii) 1s² 2s² 2p⁶ 3s² 3p¹ (iv) 1s² 2s² 2p⁶ 3s² 3p⁴ (v) $1s^2 2s^2 2p^6 3s^2 3p^5$ 6) The electron configuration belonging to the atom with the highest second ionization energy is _ A) (i) B) (ii) C) (iii) D) (iv) E) (v) Answer: A 7) Of the following statements, ______ is not true for oxygen. A) Oxygen is a colorless gas at room temperature. B) The chemical formula of ozone is O₃. C) The most stable allotrope of oxygen is O₂. D) Dry air is about 79% oxygen. E) Oxygen forms peroxide and superoxide anions. Answer: D 8) Which one of the following compounds produces a basic solution when dissolved in water? C) OF₂ A) O₂ B) Na₂O D) CO₂ E) SO₂ Answer: B 9) Which one of the following is <u>not</u> true about the alkali metals? A) They all have 2 electrons in their valence shells. B) They all readily form ions with a +1 charge. C) They are very reactive elements. D) They have the lowest first ionization energies of the elements. E) They are low density solids at room temperature. Answer: A 10) In the generation of most anions, the energy change (kJ/mol) that _____ an electron is _____ A) adds, positive B) removes, negative C) removes, positive D) adds, negative E) None of the above is correct. Answer: D 11) Which ion below has a noble gas electron configuration? B) C²⁺ C) B2+ D) Li²⁺ E) N²⁻ A) Be²⁺ Answer: A 12) In ionic bond formation, the lattice energy of ions ______ as the magnitude of the ion charges ______ and the radii A) decreases, increase, increase B) increases, increase, decrease C) increases, increase, increase D) increases, decrease, decrease E) increases, decrease, increase Answer: B

13) A valid Lewis structure of		cannot be drawn without violating the octet rule.		
A) SeF ₄	в) ро ₄ 3-	C) CF ₄	D) NF3	E) SiF4
Answer: A				
14) The formal charge	e on nitrogen in NO3 ⁻ i	s		
[:0 N / :0:	· .] 1-			
A) +2	B) +1	C) 0	D) –1	E) –2

Answer: B

15) Using the table of average bond energies below, the ΔH for the reaction is ______ kJ.

H-C≡C	C-H (g)	+ H-I (g	g) → H ₂ G	C=CHI	(g)		
Bond: D (kJ/mol):	C≡C 839	C=C 614	H-I 299	C-I 240	С-Н 413		
A) +129		B) +50	16		C) -931	D) -129	E) -506
Answer: D							

16) Using the table of bond dissociation energies, the ΔH for the following reaction is ______ kJ.

 $2HCl(g) + F_2(g) - 2HF(g) + Cl_2(g)$

Bond	D (kJ/mol)			
H-Cl	431			
F–F	155			
H-F	567			
Cl-Cl	242			
A) 223	B) -223	C) 208	D) -359	E) 359

Answer: D

17) Which two bonds are least similar in polarity?

A) O-F and Cl-F B) C-Cl and Ge-Cl C) B-F and Cl-F D) I-Br and Si-Cl E) Al-Cl and I-Br

Answer: E

18) How many equivalent resonance structures can be drawn for the molecule of SO₃ without having to violate the octet rule on the sulfur atom?

A) 2	B) 1	C) 5	D) 3	E) 4
Answer: D				

19) Given the electronegativities below, which covalent single bond is most polar?

Element:	Η	С	Ν	0		
Electronegativity:	2.1	2.5	3.0	3.5		
A) N—H	B)	O—N		С) О—Н	D) C—H	Е) О—С
Answer: C						

20) What is the electron configuration for the Co^{2+} ion?

A) [Ar]4s¹3d⁶ B) [Ar]3d⁷ C) [Ne]3s²3p¹⁰ D) [Ar]4s²3d⁹ E) [Ar]3d⁵ Answer: B

21) The value of ΔE for a system that performs 111 kJ of work on its surroundings and gains 89 kJ of heat is kJ.

A) -200	B) 22	C) 200	D) -22	E) –111
Answer: D				

22) Which one of the following is an endothermic process?

- A) water freezing
- B) boiling soup
- C) Both A and C
- D) Hydrochloric acid and barium hydroxide are mixed at 25 °C: the temperature increases.
- E) ice melting

Answer: C

23) Which of the following statements is <u>false</u>?

A) The enthalpy change for a reaction depends on the state of the reactants and products.

- B) Internal energy is a state function.
- C) The enthalpy of a reaction is equal to the heat of the reaction.
- D) The enthalpy change for a reaction is equal in magnitude, but opposite in sign, to the enthalpy change for the reverse reaction.
- E) Enthalpy is an intensive property.

Answer: E

24) The temperature of a 12.58 g sample of calcium carbonate [CaCO₃ (s)] increases from 23.6 °C to 38.2 °C. If the specific heat of calcium carbonate is 0.82 J/g–K, how many joules of heat are absorbed? A) 5.0 B) 151 C) 410 D) 0.82 E) 7.5

Answer: B

25) For which one of the following reactions is ΔH°_{rxn} equal to the heat of formation of the product?

A) $N_2(g) + 3H_2(g) - 2NH_3(g)$ B) 6C (s) + 6H (g) - C₆H₆ (l) C) P (g) + 4H (g) + Br (g) - PH₄Br (l) D) 6C (g) + 11H₂ (g) + 11O (g) - C₆H₂₂O₁₁ (g) E) (1/2)N₂ (g) + O₂ (g) - NO₂ (g)

Answer: E

26) The value of Δ H° for the reaction below is –482 kJ. Calculate the heat (kJ) released to the surroundings when 38.5 g of O₂ (g) reacts with excess CO.

2CO (g) + O₂ (g)
$$\rightarrow$$
 2CO₂ (g)
A) 210. B) 2.65 × 10³ C) 65.7 D) 580. E) 482
Answer: D

27) For which one of the following reactions is the value of ΔH°_{rxn} equal to ΔH°_{f} for the product?

A) $2Ca (s) + O_2 (g) - 2CaO (s)$ B) $3Mg (s) + N_2 (g) - Mg_3N_2 (s)$ C) C (diamond) + $O_2 (g) - CO_2 (g)$ D) $C_2H_2 (g) + H_2 (g) - C_2H_4 (g)$ E) 2C (graphite) + $O_2 (g) - 2CO (g)$

Answer: B

- 28) Which one of the following conditions would always result in an increase in the internal energy of a system?
 - A) The system loses heat and has work done on it by the surroundings.
 - B) The system gains heat and does work on the surroundings.
 - C) The system loses heat and does work on the surroundings.
 - D) The system gains heat and has work done on it by the surroundings.
 - E) None of the above is correct.

Answer: D

29) ΔH for the reaction

 $IF_5(g) \rightarrow IF_3(g) + F_2(g)$

is _____ kJ, give the data below.

Answer: D	,	,	,	,
A) +35	B) -1135	C) -35	D) +355	E) +1135
IF (g) + 2	$2 F_2(g) \rightarrow IF_5(g)$	$\Delta H = -745 \text{ kJ}$		
IF (g) + F	$F_2(g) \rightarrow IF_3(g)$	$\Delta H = -390 \text{ kJ}$		

30) A 22.44 g sample of iron absorbs 180.8 J of heat, upon which the temperature of the sample increases from 21.1 °C to 39.0 °C. What is the specific heat of iron?

A) 0.900 B) 0.820 C) 0.140 D) 0.840 E) 0.450 Answer: E

31) Of the following transitions in the Bohr hydrogen atom, the ______ transition results in the emission of the lowest-energy photon.

A) $n = 6 \rightarrow n = 1$ B) $n = 1 \rightarrow n = 4$ C) $n = 6 \rightarrow n = 3$ D) $n = 1 \rightarrow n = 6$ E) $n = 3 \rightarrow n = 6$ Answer: C

- 32) The uncertainty principle states that ____
 - A) there can only be one uncertain digit in a reported number
 - B) it is impossible to know anything with certainty
 - C) matter and energy are really the same thing
 - D) it is impossible to know how many electrons there are in an atom
 - E) it is impossible to know the exact position and momentum of an electron

Answer: E

33) Which one of the following represents an acceptable set of quantum numbers for an electron in an atom? (arranged as n, l, m_l, and m_s)

A) 3, 3, 3, -1/2 B) 5, 4, - 5, 1/2 C) 3, 3, 3, 1/2 D) 2, 2, -1, -1/2 E) 1, 0, 0, 1/2 Answer: E

34) The energy (J) required for an electronic transition in a Bohr hydrogen atom from n = 2 to n = 3 is

_____ J. A) 4.00 × 10⁻¹⁹ B) -3.00 × 10⁻¹⁹ C) 3.00 × 10⁻¹⁹ D) -7.90 × 10⁻¹⁹ E) 4.60 × 10¹⁴ Answer: C

35) The de Broglie wavelength of an electron with a velocity of 6.00×10^6 m/s is _____ m. The mass of the electron is 9.11×10^{-28} g. Here, $h=6.626 \times 10^{-34}$ J-s

A) 1.21 × 10⁻¹⁶ B) 8.25 × 10¹² C) 1.21 × 10⁻¹⁰ D) 8.25 × 10⁹ E) 1.21 × 10⁻¹³ Answer: C

36) The wavelength	of light that has a frequ	ency of 1.20 × 10^{13} s ⁻¹ is _	m.	
A) 2.5	B) 25.0	C) 2.50 × 10 ^{−5}	D) 0.0400	E) 12.0
Answer: C				

37) Which electron configuration represents a violation of the Pauli exclusion principle?A)

Answer: C