108-3rd Chem Exam (A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

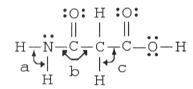
A) covalent-networ B) ionic C) molecular D) metallic E) supercritical Answer: E		d?		
2) The scattering of light	waves upon passing	through a narrow slit	is called	
A) diffusion	B) incidence	C) diffraction	D) adhesion	E) grating
Answer: C				
3) What fraction of the vecell?	olume of each corner	atom is actually within	n the volume of a face	e-centered cubic unit
A) 1	B) 1/2	C) 1/4	D) 1/8	E) 1/16
Answer: D				
4) If the electronic structure electrons and there is a electrons. A) nonmetal B) semiconductor C) insulator D) alloy E) conductor Answer: C		ice consists of a valence the next set of orbitals	•	_
5) NaCl crystallizes in a flie within a unit cell of				
A) 6	B) 8	C) 5	D) 4	E) 2
Answer: B				
6) Inorganic compounds	that are semiconduc	tors have an average of	fvalence	electrons.
A) 1	B) 4	C) 5	D) 3	E) 2
Answer: B				
7) The process of doping A) n-type semicono B) p-type semicono C) allotrope, dimini D) non-metal, decre E) non-metal, incre	ductor, increase ductor, decrease ish ease	which can great	ly intrins	ic conductivity.
Answer: A				
C) the elimination of	of a plasticizer Ifur with an addition of a small molecule significant crosslinki	polymer		

9)	Which of the following A) buckminsterfuller B) graphene C) isoprene D) carbon nanotubes E) All of the above ar Answer: C	ene			
10)	The pressure exerted by gravitational constant ti would be supported by A) 9.7 × 10 ³ mm B) 1.2 × 10 ⁴ mm C) 713 mm D) 14 mm E) 52 mm Answer: A	mes the density of th	e liquid, $P = ghd$.	How high a column of w	vater ($d = 1.0 \text{ g/mL}$)
11)	The volume of an ideal (A) -273 °C Answer: A	gas is zero at B) -45 °F	 C) -363 K	D) -273 K	E) 0 °C
12)	Standard temperature a A) 298.15 K and 1 atn B) 273.15 K and 1 pas C) 273.15 K and 1 atn D) 273.15 K and 1 ton E) 298.15 K and 1 ton Answer: C	n scal n r	the context of gas	es, refers to	
13)	The reaction of 50 mL of Cl ₂ (g) + C ₂ H ₂	f Cl ₂ gas with 50 mL ₄ (g) →C ₂ H ₄ Cl ₂ (g)	of C ₂ H ₄ gas via th	ne equation:	
	will produce a total of _ A) 150 Answer: C	mL of pro B) 100	ducts if pressure a C) 50	nd temperature are kept D) 25	t constant. E) 125
14)	The volume of a sample A) NH ₃ Answer: D	e of gas (2.49 g) was 7 B) Ne	52 mL at 1.98 atm C) SO ₂	and 62 °C. The gas is D) NO ₂	 E) SO3
15)	The density of NO ₂ in a A) 9.30 Answer: D	4.50 L tank at 760.0 t B) 3.27	torr and 25.0 °C is C) 1.68	g/L. D) 1.88	E) 1.64
16)	Of the following gases, A) CH ₄ Answer: A	B) Ar	e the greatest rate o C) HBr	of effusion at a given tem D) HCI	nperature. E) NH3
17)	Which one of the follow A) CO ₂ Answer: C	ring gases would dev B) CH3Cl	iate the <u>least</u> from C) Ne	ideal gas behavior? D) F ₂	E) Kr

_	s is expected to show the la B) argon	rgest deviations from th C) neon	ne ideal gas behavior? D) xenon	E) bolium			
A) krypton Answer: D	b) al goli	C) Heori	D) Xenon	E) helium			
, morror. B							
The strongest ir attractions exist	nterparticle attractions exist between particles of a	between particles of a _	and the we	akest interparticle			
A) liquid, gas	s B) solid, gas	C) liquid, solid	D) gas, solid	E) solid, liquid			
Answer: B							
20) Which one of th	Which one of the following exhibits dipole-dipole attraction between molecules?						
A) CCI ₄	B) Br ₂	C) CO ₂	D) C ₁₀ H ₂₂	E) PH ₃			
Answer: E							
21) Of the following	g, has the highe	st boiling point.					
	B) O ₂	C) Br ₂	D) H ₂	E) N ₂			
Answer: C							
	In which of the following molecules is hydrogen bonding likely to be the most significant component of the total intermolecular forces?						
A) CO ₂	B) CH ₄	C) C ₅ H ₁₁ OH	D) C ₆ H ₁₃ NH ₂	E) CH ₃ OH			
Answer: E							
B) dispersior C) dispersior D) dipole-di	n forces, hydrogen bonding, n forces, dipole-dipole, and n forces and dipole-dipole pole and ion-dipole n forces, dipole-dipole, and	ion-dipole	- а гроге				
(i) Viscosity in (ii) Viscosity in	nts about viscosity are true? creases as temperature deci creases as molecular weigh creases as intermolecular fo B) (i) and (iii)	reases. t increases.	D) none	E) all			
25) Based on the fo	llowing information, which	compound has the stro	ongest intermolecular f	orces?			
	Substance	ΔH_V	ap (kJ/mol)				
	Argon (Ar)		6.3				
	Benzene (C ₆ H ₆)		31.0				
	Ethanol (C ₂ H ₅ OH)		39.3				
	Water (H ₂ O) Methane (CH ₄)		40.8 9.2				
	Methanic (Ol 14)		/ · L				
A) Ethanol	B) Methane	C) Water	D) Benzene	E) Argon			
Answer: C							

	ot of the natural log of th		substance versus 1/T is	; ΛΗναρ
A) $\frac{1}{\Delta H_{Vap}}$	B) -∆H _{vap}	C) ∆H _{vap}	D) $\frac{1}{\Delta H_{\text{Vap}}}$	E) - $\frac{\Delta H_{\text{Vap}}}{R}$
Answer: E				
	owing is most likely to e H ₂ CH ₂ CH ₂ CH ₂ CH		ne behavior?	
B) CH ₃ CH ₂ CI	H ₂ CH ₂ CH ₂ - Na+			
C)				
H ₃ CO-($\left\langle \bigcirc \right\rangle$ - \cos_2 - N	a ⁺		
D) CH ₃ CH ₂ -0	C(CH ₃) ₂ -CH ₂ CH ₃			
E)				
H ₃ CO-	$\left\langle \right\rangle$ -N=N- $\left\langle \right\rangle$	— OCH3		
Answer: E				
A) regions of eB) atomic orbiC) electron doD) regions of eoverlapE) hybrid orbi	/SEPR model of molecul lectron density on an ato tals of the bonding atom mains in the valence she lectron density in the va tals will form as necessal	om will organize them s must overlap for a b II of an atom will arra lence shell of an atom	oond to form nge themselves so as to will arrange themselve	o minimize repulsions es so as to maximize
Answer: C				
29) CIF₃ has "T-shapA) 3	oed" geometry. There are B) 0	c) 1	iding domains in this m D) 2	nolecule. E) 4
A) 3 Answer: D	Б) 0	C) 1	D) Z	E) 4
A) trigonal pyr B) tetrahedral, C) trigonal pyr	nar, trigonal planar	etry of BrO ₂ - is		

Answer: E

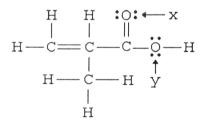

31) The molecular geometry of the right-most carbon in the molecule below is ______.

- A) trigonal bipyramidal
- B) octahedral
- C) trigonal planar
- D) T-shaped
- E) tetrahedral

Answer: C

32) The bond angles marked a, b, and c in the molecule below are about _____, ____, and _____, and _____ respectively.

- A) 109.5°, 120°, 109.5°
- B) 90°, 90°, 90°
- C) 120°, 120°, 109.5°
- D) 120°, 120°, 90°
- E) 109.5°, 90°, 120°


Answer: A

33) The molecular geometry of the SF₆ molecule is ______, and this molecule is ______.

- A) octahedral, nonpolar
- B) trigonal planar, polar
- C) trigonal bipyramidal, polar
- D) trigonal pyramidal, polar
- E) trigonal planar, nonpolar

Answer: A

34) The hybridization of the oxygen atom labeled y in the structure below is _____. The C-O-H bond angle is _____

- A) sp³, 109.5° B) sp, 90° C) sp³d², 90° D) sp², 109.5° E) sp, 180°

Answer: A

35)	There are	σ	bonds and	π bonds in H ₃ C-CH ₂	s in H ₃ C-CH ₂ -CH=CH-CH ₂ -C≡CH.		
	A) 16, 3		B) 10, 3	C) 12, 2	D) 14, 2	E) 13, 2	
	Answer: A						
36)) Based on molecular orbital theory, there are unpaired electrons in the OF+ ion.						
,	A) 1		B) 0	C) 3	D) 2	E) 1/2	
	Answer: D						
37)	Based on molecu	lar orbi	tal theory, the bond or	ders of the H—H bond	s in H_2 , H_2^+ , and H_2^-	are	
	respectively A) 1, 1/2, and 0 B) 1, 0, and 1/2 C) 1, 0, and 0 D) 1, 2, and 0 E) 1, 1/2, and 1	2					
	Answer: E						
38)	Based on molecu	lar orbi	tal theory, the bond or	der of the N—N bond i	in the N ₂ molecule is _	·	
	A) 0		B) 1	C) 2	D) 3	E) 5	
	Answer: D						
39)	39) Based on molecular orbital theory, the bond order of the N $-$ N bond in the N_2^{2+} ion is						
	A) 1 Answer: C		B) 1/2	C) 2	D) 0	E) 3	
40) Of the following, appear(s) to gain mass in a magnetic field.							
	B ₂	N ₂	O ₂				
	A) B ₂ and O ₂ Answer: A		B) B ₂ and N ₂	C) O ₂ only	D) N ₂ and O ₂	E) N ₂ only	