108-2nd Chem Exam (A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The photoelectric effect is \qquad _.
A) the production of current by silicon solar cells when exposed to sunlight
B) the darkening of photographic film when exposed to an electric field
C) the total reflection of light by metals giving them their typical luster
D) a relativistic effect
E) the ejection of electrons by a metal when struck with light of sufficient energy

Answer: E
2) In the Bohr model of the atom, \qquad .
A) electron energies are quantized
B) electron paths are controlled by probability
C) electrons can have any energy
D) electrons travel in circular paths called orbitals
E) both A and C

Answer: A
3) Of the following transitions in the Bohr hydrogen atom, the \qquad transition results in the emission of the highest- energy photon.
A) $n=6 \rightarrow n=3$
B) $\mathrm{n}=6 \rightarrow \mathrm{n}=1$
C) $\mathrm{n}=1 \rightarrow \mathrm{n}=4$
D) $\mathrm{n}=3 \rightarrow \mathrm{n}=6$
E) $\mathrm{n}=1 \rightarrow \mathrm{n}=6$

Answer: B
4) The uncertainty principle states that \qquad .
A) there can only be one uncertain digit in a reported number
B) it is impossible to know how many electrons there are in an atom
C) it is impossible to know anything with certainty
D) it is impossible to know the exact position and momentum of an electron
E) matter and energy are really the same thing

Answer: D
5) Which one of the following is not a valid value for the magnetic quantum number of an electron in a 5d subshell?
A) 3
B) 0
C) 2
D) 1
E) -1

Answer: A
6) An electron cannot have the quantum numbers $n=$ \qquad $1=$ \qquad $\mathrm{m} l=$ \qquad .
A) $1,0,0$
B) $6,1,0$
C) $3,2,3$
D) $3,2,-2$
E) $3,2,1$

Answer: C
7) Which electron configuration represents a violation of the Pauli exclusion principle?
A)

B)

C)

D)

E)

Answer: B
8) The ground state electron configuration of Ga is \qquad .
A) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d} 11$
B) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{1}$
C) $1 s^{2} 2 s^{2} 2 p 63 s^{2} 3 p 64 s^{2} 3 d 104 d 1$
D) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p 64 s^{2} 4 d^{10} 4 p^{1}$
E) $1 s^{2} 2 s^{2} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{1}$

Answer: B
9) What is the frequency $\left(\mathrm{s}^{-1}\right)$ of a photon that has an energy of $4.38 \times 10^{-18} \mathrm{~J}$?

Rydberg constant $=1.096776 \times 10^{7} \mathrm{~m}^{-1}$; Planck constant $=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
A) 1.45×10^{-16}
B) 1.31×10^{-9}
C) 6.61×10^{15}
D) 436
E) 2.30×10^{7}

Answer: C
10) The $\mathrm{n}=8$ to $\mathrm{n}=4$ transition in the Bohr hydrogen atom occurs in the \qquad region of the electromagnet spectrum.
Rydberg constant $=1.096776 \times 10^{7} \mathrm{~m}^{-1}$; Planck constant $=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
A) microwave
B) X- ray
C) infrared
D) visible
E) ultraviolet

Answer: C
11) Which of the following has eight valence electrons?
A) Kr
B) Na^{+}
C) Ti^{4+}
D) Cl^{-}
E) all of the above

Answer: E

The diagram below is the Born- Huber cycle for the formation of crystalline potassium fluoride.

12) Which energy change corresponds to the electron affinity of fluorine?
A) 1
B) 6
C) 5
D) 2
E) 4

Answer: E
13) Of the molecules below, the bond in \qquad is the most polar.
A) HBr
B) H_{2}
C) HF
D) HI
E) HCl

Answer: C
14) The bond length in an HI molecule is $1.61 \AA$ and the measured dipole moment is 0.44 D . What is the magnitude (in units of e) of the negative charge on I in HI?
(1 debye $=3.34 \times 10^{-30}$ coulomb- meters; $\mathrm{e}=1.6 \times 10^{-19}$ coulombs)
A) 0.057
B) 0.22
C) 1
D) 9.1
E) 1.6×10^{-19}

Answer: A
15) Resonance structures differ by \qquad .
A) number of electrons only
B) number of atoms only
C) number and placement of electrons
D) placement of electrons only
E) placement of atoms only

Answer: D
16) Given that the average bond energies for $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{Br}$ bonds are 413 and $276 \mathrm{~kJ} / \mathrm{mol}$, respectively, the heat of atomization of bromoform $\left(\mathrm{CHBr}_{3}\right)$ is \qquad $\mathrm{kJ} / \mathrm{mol}$.
A) 1241
B) -1378
C) -689
D) 1378
E) 689

Answer: A

17) In the Lewis structure of $\mathrm{HCO}_{3}{ }^{-}$, the formal charge on H is \qquad and the formal charge on C is
\qquad _.
A) 0,0
B) $0,-1$
C) $+1,-1$
D) $-1,-1$
E) $-1,+1$

Answer: A
18) How many equivalent resonance forms can be drawn for SO_{2} without expanding octet on the sulfur atom (sulfur is the central atom)?
A) 1
B) 3
C) 2
D) 4
E) 0

Answer: C
19) The Lewis structure of the $\mathrm{CO}_{3}{ }^{2-}$ ion is \qquad .
A)
B)

$$
\left[\begin{array}{c}
: 0: \\
\| \\
C \\
\vdots: \\
\because: \\
\because 0
\end{array}\right]^{2-}
$$

C)

$$
\left[\begin{array}{cccc}
& \ddots & & \\
& \prime & & \\
0 & & \\
0 & & & 0 \\
\ddots & & & \ddots \\
& \ddots & 1 & \\
& & \ddots &
\end{array}\right]^{2-}
$$

D)

$$
\left[\begin{array}{ccc}
\ddot{0} & & \ddot{0} \\
& 1 & \\
c & \\
& & \\
& \vdots & \\
& \ddots &
\end{array}\right]^{2-}
$$

E)

Answer: B
20) Using the table of average bond energies below, the $\Delta \mathrm{H}$ for the reaction is \qquad kJ.

Bond:	$\mathrm{C} \equiv \mathrm{C}$	$\mathrm{C}=\mathrm{C}$	$\mathrm{H}-\mathrm{I}$	$\mathrm{C}-\mathrm{I}$	$\mathrm{C}-\mathrm{H}$
$\mathrm{D}(\mathrm{kJ} / \mathrm{mol}):$	839	614	299	240	413

A) -931
B) +506
C) -506
D) +129
E) -129

Answer: E
21) At what velocity (m / s) must a 20.0 g object be moving in order to possess a kinetic energy of 1.00 J ?
A) 100×10^{2}
B) 50.0
C) 1.00×10^{3}
D) 10.0
E) 1.00

Answer: D
22) The internal energy of a system \qquad .
A) refers only to the energies of the nuclei of the atoms of the component molecules
B) is the sum of the potential and kinetic energies of the components
C) is the sum of the kinetic energy of all of its components
D) is the sum of the rotational, vibrational, and translational energies of all of its components
E) none of the above

Answer: B
23) Which one of the following is an exothermic process?
A) ice melting
B) water evaporating
C) boiling soup
D) condensation of water vapor
E) Ammonium thiocyanate and barium hydroxide are mixed at $25^{\circ} \mathrm{C}$: the temperature drops.

Answer: D
24) Of the following, which one is a state function?
A) heat
B) q
C) H
D) w
E) none of the above

Answer: C
25) A sample of calcium carbonate $\left[\mathrm{CaCO}_{3}(\mathrm{~s})\right.$] absorbs 45.5 J of heat, upon which the temperature of the sample increase from $21.1^{\circ} \mathrm{C}$ to $28.5^{\circ} \mathrm{C}$. If the specific heat of calcium carbonate is $0.82 \mathrm{~J} / \mathrm{g}-\mathrm{K}$, what is the mass (in grams) of the sample?
A) 5.0×10^{3}
B) 7.5
C) 410
D) 3.7
E) 5.0

Answer: B
26) The reaction

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}^{\circ}=-3351 \mathrm{~kJ}
$$

is \qquad and therefore heat is \qquad by the reaction.
A) exothermic, absorbed
B) endothermic, released
C) exothermic, released
D) endothermic, absorbed
E) thermoneutral, neither released nor absorbed

Answer: C
27) Consider the following two reactions:

$$
\begin{array}{ll}
\mathrm{A} \rightarrow 2 \mathrm{~B} & \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=456.7 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{~A} \rightarrow \mathrm{C} & \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-22.1 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Determine the enthalpy change for the process:

$$
2 \mathrm{~B} \rightarrow \mathrm{C}
$$

A) $434.6 \mathrm{~kJ} / \mathrm{mol}$
B) $-478.8 \mathrm{~kJ} / \mathrm{mol}$
C) $478.8 \mathrm{~kJ} / \mathrm{mol}$
D) $-434.6 \mathrm{~kJ} / \mathrm{mol}$
E) More information is needed to solve the problem.

Answer: B
28) For the species in the reaction below, $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ is zero for \qquad .

$$
2 \mathrm{Co}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})+8 \mathrm{PF}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{HCo}\left(\mathrm{PF}_{3}\right)_{4}(\mathrm{l})
$$

A) $\mathrm{H}_{2}(\mathrm{~g})$
B) $\mathrm{Co}(\mathrm{s})$
C) $\mathrm{HCo}\left(\mathrm{PF}_{3}\right) 4$ (l)
D) $\mathrm{PF}_{3}(\mathrm{~g})$
E) both $\mathrm{Co}(\mathrm{s})$ and $\mathrm{H}_{2}(\mathrm{~g})$

Answer: E
29) Given the data in the table below, $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the reaction

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

is \qquad kJ.

Substance	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-286
$\mathrm{NO}(\mathrm{g})$	90
$\mathrm{NO}_{2}(\mathrm{~g})$	34
HNO_{3} (aq)	-207
NH_{3} (g)	-46

A) -1172
B) -1892
C) -1540
D) -150
E) The $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ of $\mathrm{O}_{2}(\mathrm{~g})$ is needed for the calculation.

Answer: A
30) A slice of apple pie contains 14.0 grams of fat, 2.00 grams of protein, and 52.0 grams of carbohydrate. The respective fuel values for protein, fat, and carbohydrate are 17,38 , and $17 \mathrm{~kJ} / \mathrm{g}$, respectively. If cycling typically burns 1000.0 kJ hour, \qquad minutes of cycling are required to completely burn off the slice of pie.
A) 8.25
B) 87.0
C) less than one minute
D) 4.66
E) 1.45

Answer: B
31) The atomic radius of main- group elements generally increases down a group because \qquad .
A) effective nuclear charge decreases down a group
B) effective nuclear charge increases down a group
C) the principal quantum number of the valence orbitals increases
D) effective nuclear charge zigzags down a group
E) both effective nuclear charge increases down a group and the principal quantum number of the valence orbitals increases
Answer: C
32) Of the following, which gives the correct order for atomic radius for $\mathrm{Mg}, \mathrm{Na}, \mathrm{P}, \mathrm{Si}$ and Ar ?
A) $\mathrm{Na}>\mathrm{Mg}>\mathrm{Si}>\mathrm{P}>\mathrm{Ar}$
B) $\mathrm{Si}>\mathrm{P}>\mathrm{Ar}>\mathrm{Na}>\mathrm{Mg}$
C) $\mathrm{Ar}>\mathrm{P}>\mathrm{Si}>\mathrm{Mg}>\mathrm{Na}$
D) $\mathrm{Mg}>\mathrm{Na}>\mathrm{P}>\mathrm{Si}>\mathrm{Ar}$
E) $\mathrm{Ar}>\mathrm{Si}>\mathrm{P}>\mathrm{Na}>\mathrm{Mg}$

Answer: A
33) Which of the following is an isoelectronic series?
A) $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
B) $\mathrm{S}, \mathrm{Cl}, \mathrm{Ar}, \mathrm{K}$
C) $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Ne}, \mathrm{Na}{ }^{+}$
D) $\mathrm{Si}^{2-}, \mathrm{P}^{2-}, \mathrm{S}^{2-}, \mathrm{Cl}^{2-}$
E) $\mathrm{B}^{5-}, \mathrm{Si}^{4-}, \mathrm{As}^{3-}, \mathrm{Te}^{2-}$

Answer: C
34) Which of the following correctly represents the third ionization of aluminum?
A) $\mathrm{Al}^{-2}(\mathrm{~g})+\mathrm{e}^{-} \rightarrow \mathrm{Al}^{3-}(\mathrm{g})$
B) $\mathrm{Al}^{+2}(\mathrm{~g})+\mathrm{e}^{-} \rightarrow \mathrm{Al}^{3+}(\mathrm{g})$
C) $\mathrm{Al}(\mathrm{g}) \rightarrow \mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}^{-}$
D) $\mathrm{Al}^{+2}(\mathrm{~g})+\mathrm{e}^{-} \rightarrow \mathrm{Al}^{+1}(\mathrm{~g})$
E) $\mathrm{Al}^{+2}(\mathrm{~g}) \rightarrow \mathrm{Al}^{3+}(\mathrm{g})+\mathrm{e}^{-}$

Answer: E
35) Of the following elements, \qquad has the most negative electron affinity.
A) Al
B) B
C) P
D) Si
E) Cl

Answer: E
36) Of the elements below, \qquad is the most metallic.
A) Mg
B) Al
C) Ar
D) K
E) Na

Answer: D
37) Consider the general valence electron configuration of $n s^{2} n p^{5}$ and the following statements:
(i) Elements with this electron configuration are expected to form - 1 anions.
(ii) Elements with this electron configuration are expected to have large positive electron affinities.
(iii) Elements with this electron configuration are nonmetals.
(iv) Elements with this electron configuration form acidic oxides.

Which statements are true?
A) (i) and (ii)
B) (i), (iii,) and (iv)
C) (ii) and (iii)
D) (i), (ii), and (iii)
E) All statements are true.

Answer: B
38) \qquad is credited with developing the concept of atomic numbers.
A) Henry Moseley
B) Dmitri Mendeleev
C) Ernest Rutherford
D) Michael Faraday
E) Lothar Meyer

Answer: A
39) Consider the following properties of an element:
(i) It is solid at room temperature.
(ii) It easily forms an oxide when exposed to air.
(iii) When it reacts with water, hydrogen gas evolves.
(iv) It must be stored submerged in oil.

Which element fits the above description the best?
A) sulfur
B) sodium
C) copper
D) magnesium
E) mercury

Answer: B
40) All of the following are ionic compounds except \qquad .
A) $\mathrm{Li}_{3} \mathrm{~N}$
B) $\mathrm{K}_{2} \mathrm{O}$
C) SiO_{2}
D) NaCl
E) $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Answer: C

