1082-2nd Chem Exam(A)-1090513

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Which one of the following is a $\mathrm{Br} \varnothing$ nsted-Lowry base?
A) $\mathrm{CH}_{3} \mathrm{COOH}$
B) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
C) HNO_{2}
D) HF
E) none of the above

Answer: B
2) Which one of the following statements regarding K_{W} is false?
A) K_{W} is known as the ion product of water.
B) pK_{W} is 14.00 at $25^{\circ} \mathrm{C}$.
C) The value of K_{W} is always 1.0×10^{-14}.
D) K_{W} changes with temperature.
E) The value of K_{W} shows that water is a weak acid.

Answer: C
3) The hydride ion, H^{-}, is a stronger base than the hydroxide ion, OH^{-}. The product(s) of the reaction of hydride ion with water is/are \qquad _.
A) $\mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})$
B) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
C) no reaction occurs
D) $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$
E) $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

Answer: E
4) In the gas phase reaction below, NH_{3} is acting as a(n) \qquad .

A) $\mathrm{Br} \varnothing$ nsted-Lowry acid
B) Arrhenius acid
C) Lewis base
D) Lewis acid
E) Brønsted-Lowry base

Answer: C
5) Of the acids in the table below, \qquad is the strongest acid.

Acid	K_{a}
HOAc	1.8×10^{-5}
HCHO_{2}	1.8×10^{-4}
HClO	3.0×10^{-8}
HF	6.8×10^{-4}

A) HClO
B) HCHO_{2}
C) HF
D) HOAc
E) HOAc and HCHO_{2}

Answer: C
6) A substance that is capable of acting as both an acid and as a base is \qquad .
A) miscible
B) conjugated
C) autosomal
D) amphiprotic
E) saturated

Answer: D
7) The K_{a} of hypochlorous acid (HClO) is 3.0×10^{-8} at $25.0^{\circ} \mathrm{C}$. What is the percent ionization of hypochlorous acid in a 0.015 M aqueous solution of HClO at $25.0^{\circ} \mathrm{C}$?
A) 4.5×10^{-8}
B) 0.14
C) 2.1×10^{-5}
D) 14
E) 1.4×10^{-3}

Answer: B
8) Which of the following aqueous solutions has the highest $\left[\mathrm{OH}^{-}\right]$?
A) pure water
B) a $1 \times 10^{-4} \mathrm{M}$ solution of HNO_{3}
C) a solution with a pOH of 12.0
D) a $1 \times 10^{-3} \mathrm{M}$ solution of $\mathrm{NH}_{4} \mathrm{Cl}$
E) a solution with a pH of 3.0

Answer: A
9) A 0.5 M solution of \qquad has a pH of 7.0.
A) NaF
B) $K_{2} S$
C) KNO_{3}
D) KF
E) $\mathrm{NH}_{4} \mathrm{Br}$

Answer: C
10) What is the pH of a 0.40 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Br}$ at $25.0^{\circ} \mathrm{C}$? Kb_{b} for NH_{3} is 1.8×10^{-5}.
A) 9.18
B) 2.57
C) 11.43
D) 11.23
E) 4.82

Answer: E
11) Of the compounds below, a 0.1 M aqueous solution of \qquad will have the highest pH .
A) $\mathrm{NaHS}, \mathrm{K}_{\mathrm{b}}$ of $\mathrm{HS}^{-}=1.8 \times 10^{-7}$
B) $\mathrm{NaClO}, \mathrm{K}_{\mathrm{a}}$ of $\mathrm{HClO}=3.2 \times 10^{-8}$
C) $\mathrm{NaOAc}, \mathrm{K}_{\mathrm{a}}$ of $\mathrm{HOAc}=1.8 \times 10^{-5}$
D) $\mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{~K}_{\mathrm{b}}$ of $\mathrm{NH}_{3}=1.8 \times 10^{-5}$
E) $\mathrm{KCN}, \mathrm{K}_{\mathrm{a}}$ of $\mathrm{HCN}=4.0 \times 10^{-10}$

Answer: E
12) A^{-}is a weak base. Which equilibrium corresponds to the equilibrium constant K_{a} for HA?
A) $\mathrm{A}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})=\mathrm{HOA}^{2-}{ }_{(\mathrm{aq})}$
B) $\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
C) $\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{2} \mathrm{~A}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
D) $\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}=\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$
E) $\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{HA}_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})$

Answer: D
13) The pH of an aqueous solution at $25.0^{\circ} \mathrm{C}$ is 10.55 . What is the molarity of H^{+}in this solution?
A) 3.45
B) 2.8×10^{-11}
C) 1.1×10^{-13}
D) 3.5×10^{10}
E) 3.5×10^{-4}

Answer: B
14) A $1.0 \times 10^{-2} \mathrm{M}$ aqueous solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ at $25.0^{\circ} \mathrm{C}$ has a pH of \qquad .
A) 2.0×10^{-2}
B) 1.70
C) 12.00
D) 5.0×10^{-13}
E) 12.30

Answer: E
15) Which one of the following pairs cannot be mixed together to form a buffer solution?
A) $\mathrm{KOH}, \mathrm{HF}$
B) $\mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$
C) $\mathrm{RbOH}, \mathrm{HBr}$
D) $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{HCl}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}=\right.$acetate $)$
E) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{KH}_{2} \mathrm{PO}_{4}$

Answer: C
16) The Henderson-Hasselbalch equation is \qquad .
A) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}+\frac{[\text { base }]}{[\text { acid }]}$
B) $\mathrm{pH}=\log \frac{\text { [acid }]}{[\text { base }]}$
C) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \frac{[\text { base }]}{\text { [acid] }}$
D) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [acid] }}{\text { [base] }}$
E) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}$

Answer: E
17) The addition of KOH and \qquad to water produces a buffer solution.
A) KF
B) NH_{3}
C) $\mathrm{LiC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
D) HI
E) none of the above

Answer: E
18) A result of the common-ion effect is \qquad .
A) that common ions precipitate all counter-ions
B) that some ions, such as $\mathrm{Na}^{+}{ }_{(\mathrm{aq})}$, frequently appear in solutions but do not participate in solubility equilibria
C) that ions such as K^{+}and Na^{+}are common ions, so that their values in equilibrium constant expressions are always 1.00
D) that the selective precipitation of a metal ion, such as Ag^{+}, is promoted by the addition of an appropriate counterion $\left(\mathrm{X}^{-}\right)$that produces a compound (AgX) with a very low solubility
E) that common ions, such as $\mathrm{Na}^{+}{ }^{(\mathrm{aq})}$, don't affect equilibrium constants

Answer: D

19) A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. The unknown compound is \qquad -.
A) a strong acid
B) a strong base
C) a weak base
D) a weak acid
E) neither an acid nor a base

Answer: D

20) A 25.0 mL sample of a solution of a monoprotic acid is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. Which of the following indicators would be best for this titration?
A) thymol blue
B) bromthymol blue
C) methyl red
D) phenolpthalein
E) bromocresol purple

Answer: B

Consider the following table of $K_{s p}$ values.

Name	Formula	K_{sp}
Cadmium carbonate	CdCO_{3}	5.2×10^{-12}
Cadmium hydroxide	$\mathrm{Cd}(\mathrm{OH})_{2}$	2.5×10^{-14}
Calcium fluoride	CaF_{2}	3.9×10^{-11}
Silver iodide	AgI	8.3×10^{-17}
Zinc carbonate	ZnCO_{3}	1.4×10^{-11}

21) Which compound listed below has the greatest molar solubility in water?
A) CaF_{2}
B) AgI
C) ZnCO_{3}
D) $\mathrm{Cd}(\mathrm{OH})_{2}$
E) CdCO_{3}

Answer: A
22) In which one of the following solutions is silver chloride the most soluble?
A) pure $\mathrm{H}_{2} \mathrm{O}$
B) $0.750 \mathrm{M} \mathrm{LiNO}_{3}$
C) $0.0150 \mathrm{M} \mathrm{NH}_{3}$
D) 0.200 M HCl
E) 0.185 M KCl

Answer: C
23) Which one of the following is not amphoteric?
A) $\mathrm{Cr}(\mathrm{OH})_{3}$
B) $\mathrm{Ca}(\mathrm{OH})_{2}$
C) $\mathrm{Sn}(\mathrm{OH})_{2}$
D) $\mathrm{Al}(\mathrm{OH})_{3}$
E) $\mathrm{Zn}(\mathrm{OH})_{2}$

Answer: B
24) The K_{a} of benzoic acid is 6.30×10^{-5}. The pH of a buffer prepared by combining 50.0 mL of 1.00 M potassium benzoate and 50.0 mL of 1.00 M benzoic acid is \qquad -
A) 4.201
B) 1.705
C) 2.383
D) 0.851
E) 3.406

Answer: A
25) The concentration of fluoride ions in a saturated solution of barium fluoride is \qquad M. The solubility product constant of BaF_{2} is 1.7×10^{-6}.
A) 3.0×10^{-3}
B) 1.5×10^{-2}
C) 7.5×10^{-3}
D) 1.4×10^{-4}
E) 3.8×10^{-4}

Answer: B

26) Calculate the maximum concentration (in M) of silver ions $\left(\mathrm{Ag}^{+}\right)$in a solution that contains 0.025 M of $\mathrm{CO}_{3}{ }^{2-}$. The K_{sp} of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ is 8.1×10^{-12}.
A) 1.8×10^{-5}
B) 8.1×10^{-12}
C) 2.8×10^{-6}
D) 3.2×10^{-10}
E) 1.4×10^{-6}

Answer: A
27) Calculate the percent ionization of formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ in a solution that is 0.322 M in formic acid and 0.178 M in sodium formate $\left(\mathrm{NaHCO}_{2}\right)$. The K_{a} of formic acid is 1.77×10^{-4}.
A) 35.6
B) 0.1011
C) 1.03×10^{-3}
D) 3.488
E) 10.8

Answer: B
28) Consider a solution containing 0.100 M fluoride ions and 0.126 M hydrogen fluoride. The concentration of fluoride ions after the addition of 9.00 mL of 0.0100 M HCl to 25.0 mL of this solution is \qquad M. (HF $\mathrm{Ka}=6.8 \times 10^{-4}$)
A) 0.00253
B) 0.0980
C) 0.0709
D) 0.0735
E) 0.0762

Answer: C
29) The first law of thermodynamics can be given as \qquad .
A) $\Delta S=q_{r e v} / T$ at constant temperature
B) $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=\sum \mathrm{n} \Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ (products) $-\sum \mathrm{m} \Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ (reactants)
C) $\Delta E=q+w$
D) the entropy of a pure crystalline substance at absolute zero is zero
E) for any spontaneous process, the entropy of the universe increases

Answer: C
30) A reversible process is one that \qquad .
A) must be carried out at low temperature
B) happens spontaneously
C) is spontaneous in both directions
D) must be carried out at high temperature
E) can be reversed with no net change in either system or surroundings

Answer: E
31) Which one of the following correctly indicates the relationship between the entropy of a system and the number of different arrangements, W, in the system?
A) $S=k W$
B) $S=k \ln W$
C) $S=\frac{k}{W}$
D) $S=\frac{W}{k}$
E) $S=W k$

Answer: B
32) Consider the reaction:

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}
$$

Given the following table of thermodynamic data,

Substance	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol})$	$\mathrm{S}^{\circ}(\mathrm{J} / \mathrm{mol} \cdot \mathrm{K})$
$\mathrm{NH}_{3}(\mathrm{~g})$	-46.19	192.5
$\mathrm{HCl}(\mathrm{g})$	-92.30	186.69
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	-314.4	94.6

determine the temperature (in ${ }^{\circ} \mathrm{C}$) above which the reaction is nonspontaneous.
A) This reaction is spontaneous at all temperatures.
B) 618.1
C) 1235
D) 432.8
E) 345.0

Answer: E
33) ΔS is positive for the reaction \qquad .
A) $2 \mathrm{KClO}_{3}(\mathrm{~s})-2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2}(\mathrm{~g})$
B) $2 \mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CaO}(\mathrm{s})$
C) $\mathrm{HCl}(\mathrm{g})+\mathrm{NH}_{3}(\mathrm{~g})-\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}$
D) $\mathrm{CO}_{2}(\mathrm{~g})-\mathrm{CO}_{2}(\mathrm{~s})$
E) $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})$

Answer: A
34) For an isothermal process, the entropy change of the surroundings is given by the equation:
A) $\Delta S=-q \ln T$
B) $\Delta S=q_{\text {sys }} T$
C) $\Delta S=q \ln T$
D) $\Delta S=-q_{\text {sys }} T$
E) $\Delta S=-\mathrm{q}_{\text {sys }} / T$

Answer: E
35) For the reaction

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g})-8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\Delta \mathrm{H}^{\circ}$ is $-125 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}^{\circ}$ is $+253 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$. This reaction is \qquad .
A) spontaneous at all temperatures
B) spontaneous only at high temperature
C) spontaneous only at low temperature
D) nonspontaneous at all temperatures
E) unable to determine without more information

Answer: A
36) Given the thermodynamic data in the table below, calculate the equilibrium constant (at 298 K) for the reaction: $(\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})$
A) 2.40×10^{24}
B) 3.82×10^{23}
C) 1.06
D) 1.95
E) More data are needed.

Answer: A
37) What is the equilibrium constant for a reaction at $25^{\circ} \mathrm{C}$. The value of ΔG° is $-57.5 \mathrm{~kJ} / \mathrm{mol}$.
A) 10
B) 1.2×10^{10}
C) 8.4×10^{101}
D) 1.0
E) more information is needed

Answer: B
38) Consider the reaction:

$$
\mathrm{FeO}_{(\mathrm{s})}+\mathrm{Fe}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

Given the following table of thermodynamic data at 298 K :

Substance	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol})$	$\mathrm{S}^{\circ}(\mathrm{J} / \mathrm{K} \cdot \mathrm{mol})$
$\mathrm{FeO}_{(\mathrm{s})}$	-271.9	60.75
$\mathrm{Fe}_{(\mathrm{s})}$	0	27.15
$\mathrm{O}_{2}(\mathrm{~g})$	0	205.0
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$	-822.16	89.96

The value K for the reaction at $25^{\circ} \mathrm{C}$ is \qquad .
A) 8.1×10^{19}
B) 7.1×10^{85}
C) 5.9×10^{4}
D) 370
E) 3.8×10^{-14}

Answer: B
39) The normal boiling point of $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}$ is $47.6^{\circ} \mathrm{C}$ and its molar enthalpy of vaporization is $27.49 \mathrm{~kJ} / \mathrm{mol}$. What is the change in entropy in the system in J/K when 28.6 grams of $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}$ vaporizes to a gas at the normal boiling point?
A) 4.19
B) -13.1
C) -4.19
D) 13.1
E) 27.5

Answer: D

40) For a given reaction with $\Delta S=-50.8 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$, the $\Delta \mathrm{G}=0$ at 395 K . The value of $\Delta \mathrm{H}$ must be \qquad $\mathrm{kJ} / \mathrm{mol}$, assuming that $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ do not vary with temperature.
A) -7.78×10^{-3}
B) -1.29×10^{-4}
C) -20.1
D) 20.1
E) 1.29×10^{-4}

Answer: C

