1082-2nd Chem Exam(A)-1090513

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) Which one of the following is a Brønsted-Lowry base?
 - A) CH₃COOH
 - B) (CH₃)₃N
 - C) HNO₂
 - D) HF
 - E) none of the above

Answer: B

- 2) Which one of the following statements regarding K_w is <u>false</u>?
 - A) K_W is known as the ion product of water.
 - B) pK_w is 14.00 at 25 °C.
 - C) The value of K_W is always 1.0×10^{-14} .
 - D) K_W changes with temperature.
 - E) The value of K_W shows that water is a weak acid.

Answer: C

- 3) The hydride ion, H⁻, is a stronger base than the hydroxide ion, OH⁻. The product(s) of the reaction of hydride ion with water is/are _____.
 - A) OH- (aq) + 2H+ (aq)
 - B) H₃O+ (aq)
 - C) no reaction occurs
 - D) H₂O₂ (aq)
 - E) OH^{-} (aq) + H_{2} (g)

Answer: E

4) In the gas phase reaction below, NH₃ is acting as a(n) _____.

- A) Brønsted-Lowry acid
- B) Arrhenius acid
- C) Lewis base
- D) Lewis acid
- E) Brønsted-Lowry base

Answer: C

5) Of the acids in the	e table below,	is the strongest acid.		
Acid	K _a			
HOAc	1.8 × 10 ⁻⁵			
HCHO ₂	1.8 × 10 ⁻⁴			
HCIO				
HF	3.0×10^{-8} 6.8×10^{-4}			
	ı			
A) HClO B) HCHO ₂				
C) HF				
D) HOAc				
E) HOAc and I	HCHO ₂			
Answer: C				
6) A substance that i	s capable of acting as l	both an acid and as a bas	se is .	
A) miscible	B) conjugated	C) autosomal	D) amphiprotic	E) saturated
Answer: D				
			nat is the percent ionization	on of hypochlorous
acid in a 0.015 M a A) 4.5×10^{-8}	aqueous solution of H B) 0.14	CIO at 25.0 °C? C) 2.1×10^{-5}	D) 14	E) 1.4×10^{-3}
,	D) U.14	C) 2.1 × 10 °	D) 14	E) 1.4 × 10 °
Answer: B				
A) pure water B) a 1×10^{-4} M C) a solution w D) a 1×10^{-3} M E) a solution w	I solution of HNO ₃ ith a pOH of 12.0 I solution of NH ₄ Cl	ns has the highest [OH-]]?	
Answer: A				
9) A 0.5 M solution of	of has a pH c	of 7.0.		
A) NaF	B) K ₂ S	C) KNO ₃	D) KF	E) NH ₄ Br
Answer: C				
10) What is the pH of	a 0.40 M aqueous solu	ition of NH4Br at 25.0 °C	C? K _b for NH3 is 1.8 × 10	-5.
A) 9.18	B) 2.57	C) 11.43	D) 11.23	E) 4.82
Answer: E				
•	s below, a 0.1 M aqueo f HS ⁻ = 1.8 × 10 ⁻⁷	ous solution of	will have the <u>highest</u> pH	I.
	of HClO = 3.2×10^{-8}			
,	of HOAc = 1.8×10^{-5}			
•	T_b of NH ₃ = 1.8 × 10 ⁻⁵			
	$HCN = 4.0 \times 10^{-10}$			
Answer: E				

12) A⁻ is a weak base. Which equilibrium corresponds to the equilibrium constant K_a for HA?

A)
$$A^{-}(aq) + OH^{-}(aq) = HOA^{2-}(aq)$$

B)
$$A^{-}(aq) + H_3O^{+}(aq) = HA(aq) + H_2O(1)$$

C)
$$HA_{(aq)} + H_2O_{(1)} = H_2A^+_{(aq)} + OH^-_{(aq)}$$

D)
$$HA_{(aq)} + H_2O_{(l)} = H_3O^+_{(aq)} + A^-_{(aq)}$$

E)
$$A^{-}(aq) + H_2O(1) = HA(aq) + OH^{-}(aq)$$

Answer: D

13) The pH of an aqueous solution at 25.0 °C is 10.55. What is the molarity of H+ in this solution?

B)
$$2.8 \times 10^{-11}$$

B)
$$2.8 \times 10^{-11}$$
 C) 1.1×10^{-13}

D)
$$3.5 \times 10^{10}$$

E)
$$3.5 \times 10^{-4}$$

Answer: B

14) A 1.0×10^{-2} M aqueous solution of Ca(OH)₂ at 25.0 °C has a pH of _____.

A)
$$2.0 \times 10^{-2}$$

D)
$$5.0 \times 10^{-13}$$

Answer: E

15) Which one of the following pairs cannot be mixed together to form a buffer solution?

- A) KOH, HF
- B) NH₃, NH₄Cl
- C) RbOH, HBr
- D) $NaC_2H_3O_2$, $HCl(C_2H_3O_2^- = acetate)$
- E) H₃PO₄, KH₂PO₄

Answer: C

16) The Henderson-Hasselbalch equation is _____.

A)
$$[H^+] = K_a + \frac{[base]}{[acid]}$$

B)
$$pH = log \frac{[acid]}{[base]}$$

C)
$$pH = pK_a - log \frac{[base]}{[acid]}$$

D)
$$pH = pK_a + log \frac{[acid]}{[base]}$$

E)
$$pH = pK_a + log \frac{[base]}{[acid]}$$

Answer: E

17) The addition of KOH and ______ to water produces a buffer solution.

- A) KF
- B) NH₃
- C) LiC₂H₃O₂
- D) HI
- E) none of the above

Answer: E

- 18) A result of the common–ion effect is _____
 - A) that common ions precipitate all counter-ions
 - B) that some ions, such as Na^+ (aq), frequently appear in solutions but do not participate in solubility equilibria
 - C) that ions such as K⁺ and Na⁺ are common ions, so that their values in equilibrium constant expressions are always 1.00
 - D) that the selective precipitation of a metal ion, such as Ag+, is promoted by the addition of an appropriate counterion (X⁻) that produces a compound (AgX) with a very low solubility
 - E) that common ions, such as Na+ (aq), don't affect equilibrium constants

Answer: D

- 19) A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. The unknown compound is ______.
 - A) a strong acid
 - B) a strong base
 - C) a weak base
 - D) a weak acid
 - E) neither an acid nor a base

Answer: D

Indicator	рК _а
methyl orange	3.46
methyl red	5.00
bromocresol purple	6.12
bromthymol blue	7.10
thymol blue	8.90
phenolpthalein	9.10

- 20) A 25.0 mL sample of a solution of a monoprotic acid is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. Which of the following indicators would be best for this titration?
 - A) thymol blue
 - B) bromthymol blue
 - C) methyl red
 - D) phenolpthalein
 - E) bromocresol purple

Answer: B

Consider the following table of K_{sp} values.

Answer: B

Name	Formula	K _{sp}
Cadmium carbonate	CdCO3	5.2 × 10 ⁻¹²
Cadmium hydroxide	Cd(OH) ₂	2.5 × 10 ⁻¹⁴
Calcium fluoride	CaF ₂	3.9 × 10-11
Silver iodide	AgI	8.3 × 10-17
Zinc carbonate	ZnCO ₃	1.4 × 10 ⁻¹¹

	0-				
Zinc carbonate	ZnCO ₃	1.4×10^{-13}	1		
21) Which compound lis	sted below ha	s the greates	st molar solubility	in water?	
A) CaF ₂	B) AgI		C) ZnCO ₃	D) Cd(OH) ₂	E) CdCO ₃
Answer: A					
22) In which one of the f A) pure H ₂ O B) 0.750 M LiNO ₃ C) 0.0150 M NH ₃ D) 0.200 M HCl E) 0.185 M KCl Answer: C		utions is silv	er chloride the mo	st soluble?	
			_		
23) Which one of the foll A) Cr(OH) ₃		amphoteric H)2		D) Al(OH) ₃	E) Zn(OH) ₂
Answer: B					
24) The K _a of benzoic ac potassium benzoate	and 50.0 mL	of 1.00 M be	nzoic acid is	·	
A) 4.201 Answer: A	B) 1.705		C) 2.383	D) 0.851	E) 3.406
25) The concentration of product constant of I			ed solution of bari	um fluoride is	M. The solubility
A) 3.0×10^{-3} Answer: B	B) 1.5 ×	10-2	C) 7.5 × 10 ^{−3}	D) 1.4 × 10 ⁻⁴	E) 3.8 × 10 ⁻⁴
26) Calculate the maxim			of silver ions (Ag+) in a solution that conta	ins 0.025 M of
CO_3^2 The K_{sp} of A					
A) 1.8×10^{-5}	B) 8.1 ×	10-12	C) 2.8×10^{-6}	D) 3.2×10^{-10}	E) 1.4×10^{-6}
Answer: A					
27) Calculate the percen					formic acid and
0.178 M in sodium fo	ormate (NaHo	CO ₂). The K		1.77×10^{-4} .	
A) 35.6	B) 0.101	1	C) 1.03×10^{-3}	D) 3.488	E) 10.8

28) Consider a solution containing 0.100 M fluoride ions and 0.126 M hydrogen fluoride. The concentration of fluoride ions after the addition of 9.00 mL of 0.0100 M HCl to 25.0 mL of this solution is _____ M. (HF

$$Ka = 6.8 \times 10^{-4}$$
)

- A) 0.00253
- B) 0.0980
- C) 0.0709
- D) 0.0735
- E) 0.0762

Answer: C

- 29) The first law of thermodynamics can be given as _____.
 - A) $\Delta S = q_{rev}/T$ at constant temperature
 - B) $\Delta H^{\circ}_{rxn} = \sum_{f} n\Delta H^{\circ}_{f}$ (products) $-\sum_{f} m\Delta H^{\circ}_{f}$ (reactants)
 - C) $\Delta E = q + w$
 - D) the entropy of a pure crystalline substance at absolute zero is zero
 - E) for any spontaneous process, the entropy of the universe increases

Answer: C

- 30) A reversible process is one that _____
 - A) must be carried out at low temperature
 - B) happens spontaneously
 - C) is spontaneous in both directions
 - D) must be carried out at high temperature
 - E) can be reversed with no net change in either system or surroundings

Answer: E

31) Which one of the following correctly indicates the relationship between the entropy of a system and the number of different arrangements, W, in the system?

A)
$$S = kW$$

B)
$$S = k \ln W$$

C)
$$S = \frac{k}{W}$$

B)
$$S = k \ln W$$
 C) $S = \frac{k}{W}$ D) $S = \frac{W}{k}$

E)
$$S = Wk$$

Answer: B

32) Consider the reaction:

$$NH_3(g) + HCl(g) - NH_4Cl(s)$$

Given the following table of thermodynamic data,

Substance	ΔH_{f}° (kJ/mol)	S° (J/mol · K)
NH ₃ (g)	-46.19	192.5
HCl (g)	-92.30	186.69
NH ₄ Cl _(s)	-314.4	94.6

determine the temperature (in °C) above which the reaction is nonspontaneous.

- A) This reaction is spontaneous at all temperatures.
- B) 618.1
- C) 1235
- D) 432.8
- E) 345.0

Answer: E

33) ΔS is positive for the reaction _____.

A)
$$2 \text{ KClO}_{3 (s)} \rightarrow 2 \text{ KCl}_{(s)} + 3 O_{2 (g)}$$

B)
$$2 \text{ Ca}_{(s)} + O_{2(g)} \rightarrow 2 \text{ CaO}_{(s)}$$

C)
$$HCl(g) + NH3(g) \rightarrow NH4Cl(s)$$

D)
$$CO_{2(g)} \rightarrow CO_{2(s)}$$

E)
$$Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_{2}(s)$$

Answer: A

34) For an isothermal process, the entropy change of the surroundings is given by the equation:

A)
$$\Delta S = -q \ln T$$

B)
$$\Delta S = q_{SYS} T$$

C)
$$\Delta S = q \ln T$$

D)
$$\Delta S = -q_{SVS} T$$

E)
$$\Delta S = -q_{SVS} / T$$

Answer: E

35) For the reaction

$$2 C_4 H_{10 (g)} + 13 O_2 (g) - 8 CO_2 (g) + 10 H_2 O (g)$$

 ΔH° is -125 kJ/mol and ΔS° is +253 J/K · mol. This reaction is _____.

- A) spontaneous at all temperatures
- B) spontaneous only at high temperature
- C) spontaneous only at low temperature
- D) nonspontaneous at all temperatures
- E) unable to determine without more information

Answer: A

36) Given the thermodynamic data in the table below, calculate the equilibrium constant (at 298 K) for the reaction: ($R = 8.314 \text{ J/mol} \cdot \text{K}$)

$$2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}$$

Substance	ΔH_{f}° (kJ/mol)	S° (J/mol · K)
SO ₂ (g)	-297	249
O ₂ (g)	0	205
SO ₃ (g)	-395	256

- A) 2.40×10^{24}
- B) 3.82×10^{23}
- C) 1.06
- D) 1.95
- E) More data are needed.

Answer: A

37) What is the equilibrium constant for a reaction at 25 °C. The value of ΔG° is -57.5 kJ/mol.

- A) 10
- B) 1.2×10^{10}
- C) 8.4×10^{101}
- D) 1.0
- E) more information is needed

Answer: B

38) Consider the reaction:

$$FeO_{(s)} + Fe_{(s)} + O_{2(g)} \rightarrow Fe_2O_{3(s)}$$

Given the following table of thermodynamic data at 298 K:

Substance	ΔH_{f}° (kJ/mol)	S° (J/K·mol)
FeO(s)	-271.9	60.75
$Fe_{(s)}$	0	27.15
$O_{2(g)}$	0	205.0
$Fe_2O_{3(s)}$	-822.16	89.96

The value K for the reaction at 25 °C is _____.

- A) 8.1×10^{19}
- B) 7.1×10^{85} C) 5.9×10^4
- D) 370
- E) 3.8×10^{-14}

Answer: B

39) The normal boiling point of $C_2Cl_3F_3$ is 47.6 °C and its molar enthalpy of vaporization is 27.49 kJ/mol. What is the change in entropy in the system in J/K when 28.6 grams of C2Cl3F3 vaporizes to a gas at the normal boiling point?

- A) 4.19
- B) -13.1
- C) -4.19
- D) 13.1
- E) 27.5

Answer: D

40) For a given reaction with $\Delta S = -50.8$ J/K-mol, the $\Delta G = 0$ at 395 K. The value of ΔH must be _____ kJ/mol, assuming that ΔH and ΔS do not vary with temperature.

- A) -7.78×10^{-3}
- B) -1.29×10^{-4}
- C) -20.1
- D) 20.1
- E) 1.29×10^{-4}

Answer: C