1082-3rd Chem Exam(A)-1090617

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The standard cell potential $\left(\mathrm{E}^{\circ}\right)$ of a voltaic cell constructed using the cell reaction below is 0.76 V :

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

With $\mathrm{P}_{\mathrm{H}_{2}}=1.0 \mathrm{~atm}$ and $\left[\mathrm{Zn}^{2+}\right]=1.0 \mathrm{M}$, the cell potential is 0.53 V . The concentration of H^{+}in the cathode compartment is \qquad M.
A) 1.7×10^{-8}
B) 1.3×10^{-4}
C) 1.1×10^{-2}
D) 1.3×10^{-11}
E) 7.7×10^{3}

Answer: B
2) The standard cell potential (E° cell) for the reaction below is +1.10 V . The cell potential for this reaction is
\qquad V when the concentration of $\left[\mathrm{Cu}^{2+}\right]=1.0 \times 10^{-5} \mathrm{M}$ and $\left[\mathrm{Zn}^{2+}\right]=3.0 \mathrm{M}$.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{Zn}^{2+}(\mathrm{aq})
$$

A) 1.26
B) 1.42
C) 0.94
D) 1.10
E) 0.78

Answer: C

Table 20.1

Half Reaction	$\mathrm{E}^{\circ}(\mathrm{V})$
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-}(\mathrm{aq})$	+2.87
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.359
$\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.065
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.23
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.799
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.771
$\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})$	+0.536
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}^{(\mathrm{s})}$	+0.34
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0
$\mathrm{~Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.126
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.28
$\mathrm{Li}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.05

3) Which of the halogens in Table 20.1 is the strongest oxidizing agent?
A) Br_{2}
B) F_{2}
C) I_{2}
D) Cl_{2}
E) All of the halogens have equal strength as oxidizing agents.

Answer: B
4) Which element is reduced in the reaction below?

$$
\mathrm{Fe}^{2+}+\mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Fe}^{3+}+\mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}
$$

A) Fe
B) O
C) H
D) Cr

Answer: D
5) How many kilowatt-hours of electricity are used to produce 4.50 kg of magnesium in the electrolysis of molten MgCl_{2} with an applied emf of $5.00 \mathrm{~V} ? 1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C} ; 1 \mathrm{kWh}=3.6 \times 106 \mathrm{~J}$
A) 12.4
B) 0.0201
C) 24.8
D) 0.0496
E) 49.6

Answer: E
6) How many minutes will it take to plate out 16.22 g of Al metal from a solution of Al^{3+} using a current of 14.6 amps in an electrolytic cell?
A) 66.2
B) 153
C) 11900
D) 53.0
E) 199

Answer: E
7) Which one of the following reactions is a redox reaction?
A) $\mathrm{Pb}^{2+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{PbCl}_{2}$
B) $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{AgNO}_{3}+\mathrm{HCl} \rightarrow \mathrm{HNO}_{3}+\mathrm{AgCl}$
D) None of the above is a redox reaction.

Answer: D
8) What is the coefficient of the permanganate ion when the following equation is balanced?

$$
\mathrm{MnO}_{4}^{-}+\mathrm{Br}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Br}_{2} \quad \text { (acidic solution) }
$$

A) 1
B) 3
C) 2
D) 4
E) 5

Answer: C
9) What is the coefficient of Fe^{3+} when the following equation is balanced?

$$
\mathrm{CN}^{-}+\mathrm{Fe}^{3+} \rightarrow \mathrm{CNO}^{-}+\mathrm{Fe}^{2+} \quad \text { (basic solution) }
$$

A) 1
B) 2
C) 3
D) 4
E) 5

Answer: B
10) Which transformation could take place at the anode of an electrochemical cell?
A) HAsO_{2} to As
B) O_{2} to $\mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{F}_{2} \mathrm{toF}^{-}$
D) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{2+}$
E) None of the above could take place at the anode.

Answer: E
11) What happens to the mass number and the atomic number of an element when it undergoes alpha decay?
A) The mass number does not change and the atomic number increases by 2 .
B) The mass number decreases by 4 and the atomic number decreases by 2 .
C) The mass number increases by 4 and the atomic number does not change.
D) The mass number increases by 2 and the atomic number decreases by 1.
E) The mass number does not change and the atomic number increases by 1 .

Answer: B
12) The mass of a proton is 1.00728 amu and that of a neutron is 1.00867 amu . What is the binding energy for per mole of Co-59? (The mass of a cobalt-59 nucleus is 58.9332 amu .)
A) $1.34 \times 10^{-34} \mathrm{~J}$
B) $4.87 \times 10^{13} \mathrm{~J}$
C) $4.80 \times 10^{10} \mathrm{~J}$
D) $2.50 \times 10^{12} \mathrm{~J}$
E) $4.87 \times 10^{10} \mathrm{~J}$

Answer: B
13) The product of the nuclear reaction in which 40 Ar is subjected to neutron capture followed by alpha emission is \qquad _.
A) 35 Ar
B) 36 S
C) 45 Ca
D) 41 Ar
E) 37 S

Answer: E
14) Strontium-90 is a byproduct in nuclear reactors fueled by the radioisotope uranium-235. The half-life of strontium-90 is 28.8 yr . What percentage of a strontium-90 sample remains after 175.0 yr ?
A) 6.08
B) 84.8
C) 1.48
D) 0.230
E) 16.5

Answer: C
15) The half-life of cobalt-60 is 5.20 yr. How many milligrams of a $2.000-\mathrm{mg}$ sample remain after 9.50 years?
A) 0.565
B) 1.095
C) 7.03×10^{-22}
D) 1.435
E) 7.076

Answer: A
16) A rock contains 0.153 mg of lead-206 for each milligram of uranium-238. The half-life for the decay of uranium-238 to lead-206 is $4.5 \times 10^{9} \mathrm{yr}$. The rock was formed \qquad years ago.
A) 1.06×10^{9}
B) 7.33×10^{8}
C) 5.60×10^{8}
D) 8.08×10^{8}
E) 6.89×10^{8}

Answer: A
17) In the nuclear transmutation represented by ${ }_{8}^{16} \mathrm{O}(\mathrm{p}, \alpha){ }_{7}^{13} \mathrm{~N}$, the emitted particle is \qquad -
A) a neutron.
B) an alpha particle.
C) a positron.
D) a beta particle.
E) a proton.

Answer: B
18) What happens to the mass number and the atomic number of an element when it emits gamma radiation?
A) The mass number decreases by four and the atomic number decreases by two.
B) The mass number increases by four and the atomic number increases by two.
C) The mass number remains unchanged while the atomic number increases by one.
D) The mass number remains unchanged while the atomic number decreases by one.
E) The mass number and atomic numbers remain unchanged.

Answer: E
19) Carbon-11 decays by \qquad .
A) alpha emission
B) positron emission
C) beta emission
D) neutron capture
E) photon emission

Answer: B
20) Cobalt-60 is produced by a three reaction process involving neutron capture, beta-emission, and neutron capture. The initial reactant in the production of cobalt-60 is \qquad .
A) 60 Fe
B) ${ }^{59} \mathrm{Co}$
C) 58 Fe
D) ${ }^{61} \mathrm{Co}$
E) 56 Fe

Answer: C
21) Which one of the following is the correct formula for pentaamminechlorocobalt (III) chloride?
A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
B) $\left[\mathrm{Cl}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Co}\right] \mathrm{Co}_{2}$
C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{4}$
D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
E) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}^{2}\right] \mathrm{Cl}_{2}$

Answer: A
22) Based on electron configuration, which is most likely colorless?
A) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
B) $\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
E) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: B
23) Which element has the largest bonding atomic radius?
A) scandium
B) manganese
C) chromium
D) titanium
E) vanadium

Answer: A
24) Which ion shown has empty 5 s orbitals?
A) Mo^{2+}
B) Y^{3+}
C) Nb^{2+}
D) Zr^{4+}
E) All choices have empty 5 s orbitals.

Answer: E
25) Which of the following is not a chelating agent?
A) ethylenediamine
B) ortho-phenanthroline
C) carbonate ion
D) triphosphate ion
E) water

Answer: E
26) A substance with unpaired electrons will be \qquad .
A) permanently magnetic
B) slightly attracted to a magnet
C) nonmetallic
D) slightly repelled by a magnet
E) brightly colored

Answer: B
27) Which of the following will display optical isomerism?
A) octahedral $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
B) square-planar $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]^{-}$
C) octahedral $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NC}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}\right)_{3}\right]^{3+}$
D) square-planar $\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{NC}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}\right)_{2}\right]^{2+}$
E) octahedral $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: C
28) How many d electrons are associated with the metal ion in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$?
A) 0
B) 4
C) 1
D) 3
E) 2

Answer: D
29) What two oxidation states are more frequently observed in the first transition series than in the third?
A) +5 and +6
B) +3 and +7
C) +3 and +5
D) +2 and +3
E) +2 and +7

Answer: D
30) A complex that absorbs light at 700 nm will appear \qquad -
A) yellow
B) violet
C) green
D) red
E) orange

Answer: C
31) Which one of the following could be a straight-chain alkane?
A) $\mathrm{C}_{9} \mathrm{H}_{20}$
B) $\mathrm{C}_{3} \mathrm{H}_{3}$
C) $\mathrm{C}_{4} \mathrm{H}_{6}$
D) $\mathrm{C}_{3} \mathrm{H}_{6}$
E) $\mathrm{C}_{5} \mathrm{H}_{4}$

Answer: A
32) Which of the following compounds does not contain a $\mathrm{C}=\mathrm{O}$ bond?
A) aldahydes
B) carboxylic acids
C) esters
D) alcohols
E) none of the above

Answer: D
33) How many chiral centers are there in $\mathrm{CH}_{3} \mathrm{CHCHCH}_{2} \mathrm{CHBr}_{2}$?
A) 3
B) 4
C) 1
D) 2
E) 0

Answer: E
34) Hybridization of the carbon atom indicated by $\left(^{*}\right)$ in $\mathrm{CH}_{3}-{ }^{*} \mathrm{CH}_{2}-\mathrm{CH}_{3},{ }^{*} \mathrm{CH}_{2}=\mathrm{CH}_{2}$, and $\mathrm{CH}_{3}-{ }^{*} \mathrm{C} \equiv \mathrm{CH}$ is
\qquad and \qquad , respectively.
A) $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}$
B) $\mathrm{sp}^{3}, \mathrm{sp}, \mathrm{sp}^{2}$
C) $\mathrm{sp}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$
D) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
E) $\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}$

Answer: E
35) How many structural isomers of heptane exist?
A) 4
B) 9
C) 2
D) 8
E) 6

Answer: B
36) In general, \qquad are the most reactive hydrocarbons.
A) olefins
B) alkenes
C) alkynes
D) alkanes
E) cycloalkanes

Answer: C
37) The compound below is a(n) \qquad -

A) ester
B) carboxylic acid
C) amine
D) ketone
E) aldehyde

Answer: A
38) The melting and boiling points of hydrocarbons are determined by \qquad .
A) ionic bonding
B) dipole-dipole attraction
C) ion-dipole attraction
D) hydrogen bonding
E) London forces

Answer: E
39) Ethers can be made by condensation of two \qquad molecules by splitting out a molecule of water.
A) alcohol
B) ketone
C) alkyne
D) olefin
E) aldehyde

Answer: A

A) amide
B) ketone
C) amine
D) aldehyde
E) ester

Answer: A

