114-1 Semester General Chemistry Midterm Exam(A)-20251105

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) In the following listA) dustB) planetsC) table saltD) elemental phE) light	st, only is <u>no</u> osphorus	t an example of matter.		
Answer: E				
2) A combination of s A) pure substan B) solid C) heterogeneou D) homogeneou E) compound Answer: C	us mixture	n example of a		
3) Which one of the f A) Ag, silver B) Mg, mangan C) C, copper D) P, potassium E) Sn, silicon		t name and symbol corr	ectly matched?	
Answer: A				
A) The numberB) The numberC) The numberD) The number	wing is <u>not</u> an exact num of centimeters in an inch of seconds in a year. of millimeters in a kilom of liters in a gallon. of grams in a kilogram.	day		
5) The length of the s A) 0.847 Answer: A	ide of a cube having a d B) 3.20	ensity of 12.6 g/ml and a C) 0.584	a mass of 7.65 g is D) 1.02	cm. E) 1.32
•	nsity of 22.6 g/cm ³ . The n × 0.648 cm is		um that measures	
A) 3.45	B) 6.75 × 10 ³	C) 6.75×10^{-3}	D) 34.5	E) 148
Answer: A				

7)	The correct answer (repo	orted to the proper r	number of significant fig	gures) to the following i	S
	(2.05631)(6.9391	136) / 12.59326 =			
	A) 1.133064 B) 1.1361 C) 1.13306 D) 1.1330639 E) none of the above Answer: C				
8)	The density of mercury	is 13.6 g/cm ³ The c	lensity of mercury is	ka/m³	
0,			C) 1.36 × 10 ⁴		E) 1.36 × 10 ⁸
9)	Consider the following s (i) Each element is cor (ii) Atoms are indivisil (iii) Atoms of a given e (iv) Atoms of different Which of the postulates A) (iii) only Answer: D	mposed of extremely ble. lement are identical elements are differe is(are) <u>no longer co</u>	y small particles called a .nt and have different pr nsidered valid?	itoms.	E) (i) and (ii)
10)	B) They impart a negC) They originate frorD) They are made up	ight lines in the abse ative charge to meta in the negative electi of electrons.	ence of electric or magnerals exposed to them.		ed.
11)	Silver has two naturally	occurring isotopes	with the following isoto	pic masses:	
	107 Ar Ag 106.90509	107 47 Ar Ag 108.9047			
	The average atomic mas	s of silver is 107.868	32 amu. The fractional al	oundance of the lighter	of the two
	isotopes is A) 0.75783	B) 0.24221	C) 0.48168	D) 0.51835	E) 0.90474
	Answer: D				
12)	The average atomic weigisotopes has an atomic vhas an abundance of 30.	veight of 62.9 amu a	and constitutes 69.1% of	the copper isotopes. Th	ne other isotope
	A) 28.1 Answer: D	B) 63.8	C) 64.1	D) 64.8	E) 63.2
	—				

13)		ne pair is incorrect? magnesium permangana manganese(II) nitrate magnesium nitrite magnesium nitrate manganese(II) nitrite	te		
	Answer: C				
	The correct name for A) potassium bis B) dipotassium since C) potassium dis D) potassium su E) potassium su Answer: E	sulfate sulfide Ifate			
	The correct name for A) iodous acid B) periodic acid C) hypoiodic acid D) hydriodic acid E) periodous acid Answer: A	d			
		l			
		lar formula for 1-hexanol′ B) C7H ₁₃ OH	C) C ₆ H ₁₄ OH	D) C ₇ H ₁₄ OH	E) C ₆ H ₁₃ OH
	Allswei. E				
	The name of the ior A) rubidium bro B) rubidium hyp C) rubidium bro D) rubidium per E) rubidium per Answer: E	oobromate mide bromite	·		
18)	When the following	g equation is balanced, the	coefficients are	·	
	C ₈ H ₁₈	$_3 + O_2 \rightarrow CO_2 + H_2O$			
	A) 2, 12, 8, 9	B) 4, 4, 32, 36	C) 1, 4, 8, 9	D) 2, 3, 4, 4	E) 2, 25, 16, 18

Answer: E

19)	B) A gas is producedC) They are inflated aD) The gas used for ir	ith sodium azide initia when the air bag activa is a result of a decompo oflating them is oxygen	lly ates. osition reaction			
20)	Which of the following at 1) $CH_4(g) + O_2(g) \rightarrow$ 2) $CaO(s) + CO_2(g) -$ 3) $Mg(s) + O_2(g) \rightarrow N$	CO ₂ (g) + H ₂ O (l) →CaCO ₃ (s) IgO (s)	tions?			
	4) PbCO₃ (s) →PbO (s)A) 4 onlyAnswer: A	= =	C) 2, 3, and 4	D) 2 and 3	E) 1, 2, and 3	
21)	What is the mass % of ca A) 60.0 Answer: C	arbon in dimethylsulfo: B) 7.74	xide (C ₂ H ₆ SO) rounded C) 30.7	I to three significant figu D) 20.6	ires? E) 79.8	
22)	Gaseous argon has a der argon gas at standard co A) 3.43 × 10 ²⁵ Answer: D	onditions?		many argon atoms are ir D) 2.11 × 10 ²²		
23)	The total number of ator	ms in 0.111 mol of Fe(C	CO)3(PH3)2 is	·		
	A) 15.0 Answer: D	B) 4.46 × 10 ²¹	C) 2.76 × 10 ⁻²⁴	D) 1.00 × 10 ²⁴	E) 1.67	
24)	The molecular formula of The molar mass of asparance A) 43 Answer: E	rtame, rounded to the r		g.	E) 294	
25)	Sulfur and oxygen react produced by the reaction experiment?	•		-		
	$S(s) + O_2(g) \rightarrow SO_3(g)$ (not balanced)					
	A) 95 Answer: A	B) 99	C) 63	D) 32	E) 75	

26) The net ionic equ	uation for formation of an	aqueous solution of N	Jil ₂ accompanied by evo	olution of CO ₂ g
_	NiCO ₃ and aqueous hyd			
A) 2NiCO ₃ (s	$+ HI (aq) \rightarrow 2H_2O (I) +$	$+ CO_2(g) + 2Ni^{2+}(ac)$	q)	
B) NiCO ₃ (s)	+ 2HI (aq) →H ₂ O (I) +	CO_2 (g) + Ni^{2+} (aq)	+ 21 ⁻ (aq)	
C) NiCO ₃ (s)	+ 2HI (aq) \rightarrow 2H ₂ O (I) +	$+ CO_2(g) + NiI_2(aq)$		
D) NiCO ₃ (s)	+ I ⁻ (aq) →2H ₂ O (I) + (CO ₂ (g) + Ni ²⁺ (aq) +	HI (aq)	
E) NiCO ₃ (s)	+ 2H+ (aq) →H ₂ O (I) +	CO_2 (g) + Ni^{2+} (aq)		
Answer: E				
27) When aqueous s A) Nal and Kl B) Li ₂ CO ₃ an		e mixed, a precipitate	forms.	
C) KOH and I				
D) K ₂ SO ₄ and				
E) NiBr ₂ and	-			
Answer: E				
A) NH ₄ OH (a B) NaOH (aq) C) NaCl (aq) a	ion will produce a precip q) and HCI (aq) and Fe(NO3)2 (aq) and HC2H3O2 (aq) q) and Ca(C2H3O2)2 (aq) and HCI (aq)			
A) This solution B) 1.00 L of the C) There are 6 D) This solution	e following is <u>not</u> true coron contains 1.60 mol of on is solution is required to 0.02×10^{22} phosphorus at on contains 0.200 mol of 0.200 mo	xygen atoms. furnish 0.300 mol of Cooms in 500.0 mL of this Ca3(PO4)2.	a ² + ions.)2?
E) This solution Answer: A	on contains 6.67 × 10 ⁻² m Answer: E	ol of Ca ²⁺ .		
30) What mass (g) o	f CaF ₂ is formed when 47	7.8 mL of 0.334 M NaF	is treated with an excess	of aqueous
A) 0.623 Answer: A	B) 2.49	C) 0.472	D) 0.943	E) 1.25
	<i>D</i>) 2.47	O) 0.472	D) 0.740	<i>L)</i> 1

31) Based on the activity series, which one of the reactions below will occur

IABLE 4.5 Activi	ty Series of Metals in Aqueous Solut	ion
Metal	Oxidation Reaction	
Lithium	$Li(s) \longrightarrow Li^{+}(aq) + e^{-}$	
Potassium	$K(s) \longrightarrow K^+(aq) + e^-$	
Barium	$Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$	
Calcium	$Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$	4
Sodium	$Na(s) \longrightarrow Na^{+}(aq) + e^{-}$	
Magnesium	$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$	
Aluminum	$Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$	
Manganese	$Mn(s) \longrightarrow Mn^{2+}(aq) + 2e^{-}$	Se Se
Zinc	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$	Ease of oxidation increases
Chromium	$Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$	n in
Iron	$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$	atio
Cobalt	$Co(s) \longrightarrow Co^{2+}(aq) + 2e^{-}$	xid
Nickel	$Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-}$	oto
Tin	$Sn(s) \longrightarrow Sn^{2+}(aq) + 2e^{-}$	ase
Lead	$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$	ш
Hydrogen	$H_2(g) \longrightarrow 2 H^+(aq) + 2e^-$	
Copper	$Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$	
Silver	$Ag(s) \longrightarrow Ag^{+}(aq) + e^{-}$	
Mercury	$Hg(I) \longrightarrow Hg^{2+}(aq) + 2e^{-}$	
Platinum	$Pt(s) \longrightarrow Pt^{2+}(aq) + 2e^{-}$	
Gold	$Au(s) \longrightarrow Au^{3+}(aq) + 3e^{-}$	

- A) Fe (s) + $ZnCl_2$ (aq) \rightarrow FeCl₂ (aq) + Zn (s)
- B) Pb (s) + NiI₂ (aq) \rightarrow PbI₂ (aq) + Ni (s)
- C) $SnBr_2(aq) + Cu(s) \rightarrow CuBr_2(aq) + Sn(s)$
- D) Mn (s) + NiCl₂ (aq) \rightarrow MnCl₂ (aq) + Ni (s)
- E) None of the reactions will occur.

Answer: D

- 32) What volume (mL) of 7.48×10^{-2} M perchloric acid can be neutralized with 115 mL of 0.244 M sodium hydroxide?
 - A) 8.60
- B) 125
- C) 188
- D) 375
- E) 750

Answer: D

- 33) The molarity (M) of an aqueous solution containing 22.5 g of sucrose ($C_{12}H_{22}O_{11}$) in 35.5 mL of solution is _____.
 - A) 1.85
- B) 0.104
- C) 1.85×10^{-3}
- D) 0.0657
- E) 3.52

Answer: A

34)	Which one of the fol A) condensation of B) ice melting C) boiling soup D) water evaporate E) Ammonium th	of water vapor	·	ıt 25°C: the temperature	drops.
	Answer: A				
35)	C) The enthalpy c D) The enthalpy c	tate function. of q measured under hange of a reaction is	conditions of constant v the reciprocal of the ΔH	olume. I of the reverse reaction. te of the reactants and pr	oducts.
27)	The terrer energy of	- 12 F0 m	laituma aa dha mada [CaCO	- (a)] imama assa finana 22 (°C +- 20 2 °C
36)	•	= :		3 (s)] increases from 23.6 oules of heat are absorbe	
	A) 5.0	B) 151	C) 410	D) 7.5	E) 0.82
	Answer: B				
37)	A) Xe (g) + 2F ₂ (g B) CH ₄ (g) + 2CI C) 2CO (g) + O ₂	$(g) \rightarrow XeF_4 (g)$ $(g) \rightarrow CH_2CI_2 (I) + (g) \rightarrow 2CO_2 (g)$ $(g) \rightarrow CO_2 (g)$	is ∆H° _{rxn} equal to ∆H _f ' 2HCl (g)	for the product?	
38)	The change in the in the surroundings is		tem that absorbs 2,500 J	of heat and that does 7,6	55 J of work on
	A) 5,155 Answer: B	B) -5,155	C) -10,155	D) 1.91 × 10 ⁷	E) 10,155
39)	The value of ΔH° for 0.95 g of S is		s -790 kJ. The enthalpy	change accompanying th	ne reaction of
	2S (s) + 3O ₂	$_2(g) \rightarrow 2SO_3(g)$			
	A) 23	B) -790	C) 12	D) -23	E) -12
	Answer: E	,	-, -	, -	,

40) The value of ΔH° for the reaction below is +128.1 kJ:

$$CH_3OH(I) \rightarrow CO(g) + 2H_2(g)$$

How many kJ of heat are consumed when 5.10 g of H₂ (g) is formed as shown in the equation?

- A) 326
- B) 62.0
- C) 653
- D) 163
- E) 128

Answer: D

41) ΔH for the reaction

$$IF_5(g) \rightarrow IF_3(g) + F_2(g)$$

is _____ kJ, give the data below.

- $\mathsf{IF}(\mathsf{g}) + \mathsf{F}_2(\mathsf{g}) \to \mathsf{IF}_3(\mathsf{g})$
- $\Delta H = -390 \text{ kJ}$
- IF (g) + 2 F₂ (g) \rightarrow IF₅ (g) $\Delta H = -745 \text{ kJ}$

- A) +1135
- B) +355
- C) -35
- D) -1135
- E) +35

Answer: B

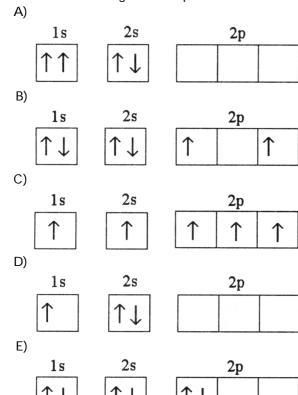
42) The specific heat of liquid bromine is 0.226 J/g-K. How much heat (J) is required to raise the temperature of 10.0 mL of bromine from 25.00 °C to 27.30 °C? The density of liquid bromine: 3.12 g/mL.

- A) 32.4
- B) 5.20
- C) 10.4
- D) 16.2
- E) 300

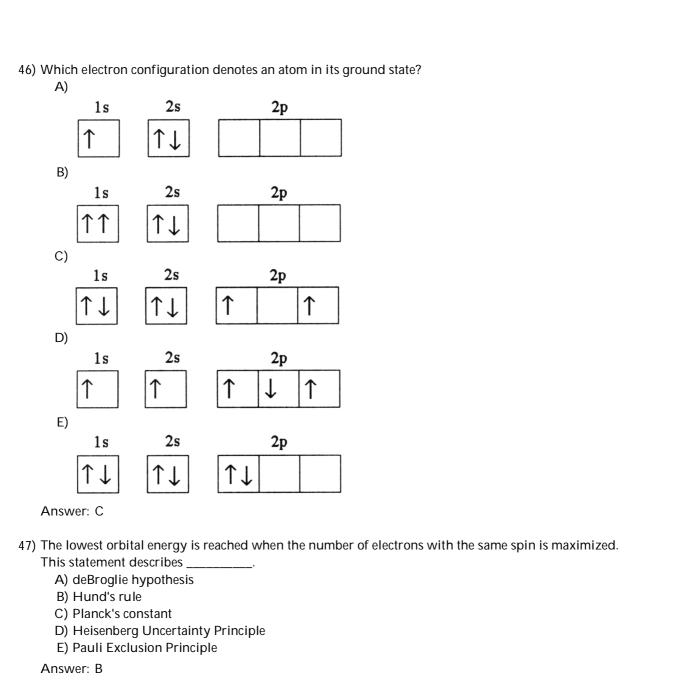
Answer: D

43) All of the orbitals in a given subshell have the same value of the _____ quantum number.

- A) angular momentum
- B) principal
- C) magnetic
- D) A and B
- E) B and C


Answer: D

44) Which quantum numbers must be the same for the orbitals that they designate to be degenerate in a many-electron system?


- A) n, I, m_I , and m_S
- B) n and I only
- C) n only
- D) n, I, and m_I
- E) m_S only

Answer: B

45) Which electron configuration represents a violation of the Pauli exclusion principle?

Answer: A

 $h=6.626\times10^{-34} \text{ J}\cdot\text{s}$

A) 2.64×10^{6}

B) 3.79×10^{-7} C) 2.38×10^{23}

D) 4.21×10^{-24}

E) 3.79×10^7

Answer: B

49) The condensed electron configuration of silicon, element 14, is _

A) [He]2s4

B) [He]2s⁴2p⁶

C) [He]2s⁶2p²

D) [Ne]2p¹⁰

E) [Ne]3s²3p²

Answer: E

50) The n = 5 to n = 3 transition in the Bohr hydrogen atom corresponds to the ______ of a photon with a wavelength of _____ nm.

$$\frac{1}{\lambda} = R H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
 RH = 1.096776 × 10⁷ m⁻¹.

- A) absorption, 657
- B) emission, 657
- C) absorption, 1280
- D) emission, 389
- E) emission, 1280

Answer: E