114-1 Semester General Chemistry Midterm Exam(B)-20251105

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) When the following equation is balanced, t	the coefficients are
---	----------------------

$$C_8H_{18} + O_2 \rightarrow CO_2 + H_2O$$

A) 2, 12, 8, 9

B) 4, 4, 32, 36

C) 1, 4, 8, 9

D) 2, 3, 4, 4

E) 2, 25, 16, 18

Answer: E

- 2) Which one of the following is <u>not</u> true concerning automotive air bags?
 - A) They are loaded with sodium azide initially
 - B) A gas is produced when the air bag activates.
 - C) They are inflated as a result of a decomposition reaction
 - D) The gas used for inflating them is oxygen
 - E) The two products of the decomposition reaction are sodium and nitrogen

Answer: D

3) Which of the following are decomposition reactions?

1)
$$CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$$

2) CaO (s) + CO₂ (g)
$$\rightarrow$$
 CaCO₃ (s)

3) Mg (s) + O₂ (g)
$$\rightarrow$$
 MgO (s)

4)
$$PbCO_3$$
 (s) $\rightarrow PbO$ (s) + CO_2 (g)

Answer: A

4) What is the mass % of carbon in dimethylsulfoxide (C_2H_6SO) rounded to three significant figures?

Answer: C

5) Gaseous argon has a density of 1.40 g/L at standard conditions. How many argon atoms are in 1.00 L of argon gas at standard conditions?

A)
$$3.43 \times 10^{25}$$

B)
$$6.02 \times 10^{23}$$

C)
$$1.59 \times 10^{25}$$

E)
$$4.76 \times 10^{22}$$

Answer: D

6) The total number of atoms in 0.111 mol of Fe(CO)₃(PH₃)₂ is ______.

B)
$$4.46 \times 10^{21}$$

C)
$$2.76 \times 10^{-24}$$

D)
$$1.00 \times 10^{24}$$

Answer: D

7) The molecular formula of aspartame, the generic name of NutraSweet[®], is C₁₄H₁₈N₂O₅.

The molar mass of aspartame, rounded to the nearest integer, is ______ g.

A) 43

B) 24

C) 39

D) 156

E) 294

Answer: E

	gen react to produce sulfo e reaction of 5.0 grams of	•		
S (s) +	$O_2(g) \rightarrow SO_3(g)$ (not b	alanced)		
A) 95 Answer: A	B) 99	C) 63	D) 32	E) 75
via mixing solic A) 2NiCO ₃ (s B) NiCO ₃ (s) C) NiCO ₃ (s) D) NiCO ₃ (s)	uation for formation of a I NiCO ₃ and aqueous hy s) + HI (aq) \rightarrow 2H ₂ O (I) + 2HI (aq) \rightarrow 2H ₂ O (I) + 2HI (aq) \rightarrow 2H ₂ O (I) + I ⁻ (aq) \rightarrow 2H ₂ O (I) + 2H ⁺ (aq) \rightarrow H ₂ O (I)	rdriodic acid is + CO ₂ (g) + 2Ni ²⁺ (aq) + CO ₂ (g) + Ni ²⁺ (aq) + CO ₂ (g) + Ni ²⁺ (aq) +	 q) + 2I ⁻ (aq)	olution of CO2 gas
A) Nal and K B) Li ₂ CO ₃ ar C) KOH and D) K ₂ SO ₄ an E) NiBr ₂ and Answer: E 11) Which combina A) NH ₄ OH (B) NaOH (aq) C) NaCl (aq) D) AgNO ₃ (a	nd CsI Ba(NO3)2 d CrCl3	pitate?	forms.	
A) This solut B) 1.00 L of the control of the contr	e following is <u>not</u> true color contains 1.60 mol of his solution is required to 6.02×10^{22} phosphorus a fion contains 0.200 mol of the contains 6.67×10^{-2} maswer: E	oxygen atoms. o furnish 0.300 mol of Contonish of Contonish 500.0 mL of this cag(PO ₄) ₂ . The contonish of Ca ²⁺ .	a ² + ions. s solution.	
calcium nitrate? A) 0.623 Answer: A	=	C) 0.472	D) 0.943	E) 1.25

14) What volume (mL) of 7.48×10^{-2} M perchloric acid can be neutralized with 115 mL of 0.244 M sodium hydroxide?

A) 8.60

B) 125

C) 188

D) 375

E) 750

Answer: D

15) The molarity (M) of an aqueous solution containing 22.5 g of sucrose ($C_{12}H_{22}O_{11}$) in 35.5 mL of solution is

A) 1.85

B) 0.104

C) 1.85×10^{-3}

D) 0.0657

E) 3.52

Answer: A

16) Based on the activity series, which one of the reactions below will occur

Metal	Oxidation Reaction	
Lithium	$Li(s) \longrightarrow Li^{+}(aq) + e^{-}$	
Potassium	$K(s) \longrightarrow K^+(aq) + e^-$	
Barium	$Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$	
Calcium	$Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$	4
Sodium	$Na(s) \longrightarrow Na^{+}(aq) + e^{-}$	
Magnesium	$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$	
Aluminum	$Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$	
Manganese	$Mn(s) \longrightarrow Mn^{2+}(aq) + 2e^{-}$	88
Zinc	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$	rea
Chromium	$Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$	n ji
Iron	$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$	atio
Cobalt	$Co(s) \longrightarrow Co^{2+}(aq) + 2e^{-}$	Ease of oxidation increases
Nickel	$Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-}$	ojo
Tin	$Sn(s) \longrightarrow Sn^{2+}(aq) + 2e^{-}$	ase
Lead	$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$	ш
Hydrogen	$H_2(g) \longrightarrow 2 H^+(aq) + 2e^-$	
Copper	$Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$	
Silver	$Ag(s) \longrightarrow Ag^{+}(aq) + e^{-}$	
Mercury	$Hg(I) \longrightarrow Hg^{2+}(aq) + 2e^{-}$	
Platinum	$Pt(s) \longrightarrow Pt^{2+}(aq) + 2e^{-}$	
Gold	$Au(s) \longrightarrow Au^{3+}(aq) + 3e^{-}$	

- A) Fe (s) + $ZnCl_2$ (aq) \rightarrow Fe Cl_2 (aq) + Zn (s)
- B) Pb (s) + NiI₂ (aq) \rightarrow PbI₂ (aq) + Ni (s)
- C) $SnBr_2$ (aq) + Cu (s) $\rightarrow CuBr_2$ (aq) + Sn (s)
- D) Mn (s) + NiCl₂ (aq) \rightarrow MnCl₂ (aq) + Ni (s)
- E) None of the reactions will occur.

Answer: D

17)	Which one of the follow A) condensation of w B) ice melting C) boiling soup D) water evaporating E) Ammonium thioc	vater vapor	mic process? m hydroxide are mixed at 2!	5°C: the temperature	drops.
	Answer: A				
18)	C) The enthalpy char	e function. In measured under Inge of a reaction is Inge for a reaction	true? conditions of constant volus the reciprocal of the ΔH of is independent of the state α	the reverse reaction.	oducts.
19)	The temperature of a 12	2.58 g sample of ca	alcium carbonate [CaCO3 (s)] increases from 23.6	°C to 38.2 °C.
	If the specific heat of ca A) 5.0	lcium carbonate i B) 151	s 0.82 J/g-K, how many joul C) 410	es of heat are absorbe D) 7.5	ed? E) 0.82
	Answer: B	<i>Б)</i> 131	C) 410	D) 7.3	L) 0.02
20)	For which one of the fold A) Xe (g) + 2F ₂ (g) - B) CH ₄ (g) + 2CI ₂ (g) C) 2CO (g) + O ₂ (g) D) C (diamond) + O E) N ₂ (g) + O ₃ (g) - Answer: A	\rightarrow XeF ₄ (g) g) \rightarrow CH ₂ CI ₂ (l) \rightarrow 2CO ₂ (g) \rightarrow 2 (g) \rightarrow CO ₂ (g)	s is ∆H° _{rxn} equal to ∆H _f ° fo + 2HCl (g)	r the product?	
21)	The change in the interr the surroundings is		stem that absorbs 2,500 J of	heat and that does 7,6	55 J of work on
	A) 5,155 Answer: B	B) -5,155	C) -10,155	D) 1.91 × 10 ⁷	E) 10,155
22)	The value of ΔH° for th 0.95 g of S is		is -790 kJ. The enthalpy cha	nge accompanying th	e reaction of
	2S (s) + 3O ₂ (g	$\rightarrow 2SO_3 (g)$			
	A) 23	B) -790	C) 12	D) -23	E) -12
	Answer: E				

23) The value of ΔH° for the reaction below is +128.1 kJ:

$$CH_3OH(I) \rightarrow CO(g) + 2H_2(g)$$

How many kJ of heat are consumed when 5.10 g of H₂ (g) is formed as shown in the equation?

- A) 326
- B) 62.0
- C) 653
- D) 163
- E) 128

Answer: D

24) ΔH for the reaction

$$IF_5(g) \rightarrow IF_3(g) + F_2(g)$$

is _____ kJ, give the data below.

- IF (g) + F₂ (g) \rightarrow IF₃ (g) Δ H = -390 kJ
- IF (g) + 2 F₂ (g) \rightarrow IF₅ (g) $\Delta H = -745 \text{ kJ}$

- A) +1135
- B) +355
- C) -35
- D) -1135
- E) +35

Answer: B

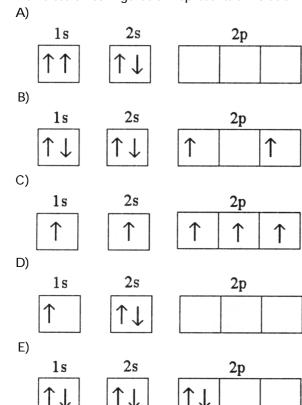
25) The specific heat of liquid bromine is 0.226 J/g-K. How much heat (J) is required to raise the temperature of 10.0 mL of bromine from 25.00 °C to 27.30 °C? The density of liquid bromine: 3.12 g/mL.

- A) 32.4
- B) 5.20
- C) 10.4
- D) 16.2
- E) 300

Answer: D

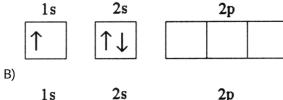
26) All of the orbitals in a given subshell have the same value of the _____ quantum number.

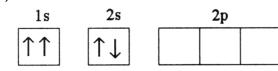
- A) angular momentum
- B) principal
- C) magnetic
- D) A and B
- E) B and C

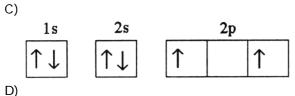

Answer: D

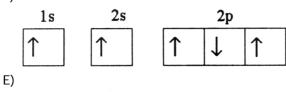
27) Which quantum numbers must be the same for the orbitals that they designate to be degenerate in a many-electron system?

- A) n, I, m_I, and m_S
- B) n and I only
- C) n only
- D) n, I, and m_I
- E) m_S only


Answer: B


28) Which electron configuration represents a violation of the Pauli exclusion principle?




Answer: A

29) Which electron configuration denotes an atom in its ground state? A) 2s1s2p

Answer: C

30) The lowest orbital energy is reached when the number of electrons with the same spin is maximized.

This statement describes _

- A) deBroglie hypothesis
- B) Hund's rule
- C) Planck's constant
- D) Heisenberg Uncertainty Principle
- E) Pauli Exclusion Principle

Answer: B

31) The wavelength of a photon that has an energy of 5.25×10^{-19} J is _____ m.

$$h=6.626\times10^{-34} \text{ J}\cdot\text{s}$$

Answer: B

32) The condensed electron configuration of silicon, element 14, is _

Answer: E

33) The n = 5 to n = 3 tra wavelength of		ydrogen atom correspond	Is to the	of a photon with a
$\frac{1}{\lambda} = RH \left(\frac{1}{n_1^2} - \frac{1}{n_1^2} \right)$	$\left(\frac{1}{n_2^2}\right)$ R _H =1.09677	6 ×10 ⁷ m ⁻¹ .		
A) absorption, 65 B) emission, 657 C) absorption, 12 D) emission, 389 E) emission, 1280 Answer: E	80			
A) dustB) planetsC) table saltD) elemental phoE) light		<u>ot</u> an example of matter.		
Answer: E				
35) A combination of saA) pure substancB) solidC) heterogeneousD) homogeneousE) compoundAnswer: C	e s mixture	an example of a		
36) Which one of the fo A) Ag, silver B) Mg, manganes C) C, copper D) P, potassium E) Sn, silicon Answer: A	•	nt name and symbol corre	ectly matched?	
B) The number o C) The number o D) The number o	ing is <u>not</u> an exact numer f centimeters in an ince f seconds in a year . If millimeters in a kilor f liters in a gallon. If grams in a kilogram.	h. <mark>day</mark> meter.		
Allswell D				
38) The length of the sid A) 0.847 Answer: A	de of a cube having a d B) 3.20	density of 12.6 g/ml and a C) 0.584	a mass of 7.65 g is D) 1.02	cm. E) 1.32

-	_	0.648 cm is	=		
	A) 3.45	B) 6.75 × 10 ³	C) 6.75×10^{-3}	D) 34.5	E) 148
A	nswer: A				
40) Tł	ne correct answer (re	ported to the proper r	number of significant fig	gures) to the following i	S
	(2.05631)(6.93	91136) / 12.59326 =			
A	A) 1.133064 B) 1.1361 C) 1.13306 D) 1.1330639 E) none of the aboves	re			
41) Th	ne density of mercur	vis 13.6 a/cm3. The c	lensity of mercury is	ka/m3	
•			•	D) 1.36 × 10 ⁻²	E) 1.36 × 10 ⁸
	nswer: C	b) 1.00 × 10	O) 1.00 × 10	D) 1.30 × 10	L) 1.00 × 10
(ii (ii (iv	Atoms are indiviAtoms of a givenAtoms of differer	sible. element are identical nt elements are differe es is(are) <u>no longer co</u>	nt and have different pr		E) (i) and (ii)
	A) They travel in strB) They impart a neC) They originate frD) They are made u	egative charge to meta rom the negative electi up of electrons.	ence of electric or magne Is exposed to them. rode.	etic fields. m which they are emitte	ed.
44) Si	lver has two natural	ly occurring isotopes	with the following isoto	pic masses:	
	107 47 Ar Ag 106.90509	107 47 Ar Ag 108.9047			
	ne average atomic m otopes is		2 amu. The fractional al	oundance of the lighter	of the two
130	A) 0.75783	- В) 0.24221	C) 0.48168	D) 0.51835	E) 0.90474
A	nswer: D				

45)	The average atomic weight of copper, which has two naturally occurring isotopes, is 63.5. One of the isotopes has an atomic weight of 62.9 amu and constitutes 69.1% of the copper isotopes. The other isotope has an abundance of 30.9%. The atomic weight (amu) of the second isotope is amu.					
	A) 28.1	B) 63.8	C) 64.1	D) 64.8	amu. E) 63.2	
	Answer: D	,	,	,	,	
46) Which formula/nar A) Mg(MnO ₄) ₂ B) Mn(NO ₃) ₂ C) Mg ₃ N ₂ D) Mg(NO ₃) ₂ E) Mn(NO ₂) ₂ Answer: C	me pair is incorrect? magnesium permangana manganese(II) nitrate magnesium nitrite magnesium nitrate manganese(II) nitrite	ate			
47	A) The correct name for A) potassium bis B) dipotassium dis C) potassium dis D) potassium su E) potassium su Answer: E	sulfate sulfide Ifate				
48	A) iodous acid B) periodic acid C) hypoiodic acid D) hydriodic acid E) periodous aci	d				
49) What is the molecu A) C ₆ H ₁₂ OH Answer: E	lar formula for 1-hexanol B) C7H13OH	? C) C ₆ H ₁₄ OH	D) C7H ₁₄ OH	E) C ₆ H ₁₃ OH	
50	The name of the ion A) rubidium bro B) rubidium hyp C) rubidium bro D) rubidium per E) rubidium per Answer: E	oobromate mide bromite	·			