## 113-2 Semest General Chemistry Final Exam (A)-2025/06/04

A) nonspontaneous at all temperatures

Answer: C

C) spontaneous only at high temperature

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A reaction that is spontaneous as written \_\_\_\_\_. A) is very slow B) will proceed without outside intervention C) is also spontaneous in the reverse direction D) is very rapid E) has an equilibrium position that lies far to the left Answer: B 2) Of the following, only \_\_\_\_\_ is <u>not</u> a state function. A) q B) S C) T D) H E) E Answer: A 3) When a system is at equilibrium, \_\_\_\_\_. A) the forward and the reverse processes are both spontaneous B) the forward process is spontaneous but the reverse process is not C) the reverse process is spontaneous but the forward process is not D) both forward and reverse processes have stopped E) the process is not spontaneous in either direction Answer: E 4) The second law of thermodynamics states that ... A) the entropy of a pure crystalline substance is zero at absolute zero B)  $\Delta E = q + w$ C) for any spontaneous process, the entropy of the universe increases D)  $\Delta H^{\circ}_{rxn} = \Sigma n\Delta H^{\circ}_{f}$  (products) -  $\Sigma m\Delta H^{\circ}_{f}$  (reactants) E)  $\Delta S = q_{reV}/T$  at constant temperature Answer: C 5) For the reaction  $C_2H_4(q) \rightarrow C_2H_4(q) + H_2(q)$  $\Delta H^{\circ}$  is +137 kJ/mol and  $\Delta S^{\circ}$  is +120 J/K · mol. This reaction is \_\_\_

B) spontaneous at all temperatures

D) spontaneous only at low temperature

## 6) Consider the reaction:

$$Ag^+$$
 (aq) + CI<sup>-</sup> (aq)  $\rightarrow AgCI$  (s)

Given the following table of thermodynamic data,

| Substance | $\Delta H_{f}^{\circ}$ (kJ/mol) | S° (J/mol · K) |
|-----------|---------------------------------|----------------|
| Ag+ (aq)  | 105.90                          | 73.93          |
| CI- (aq)  | -167.2                          | 56.5           |
| AgCI (s)  | -127.0                          | 96.11          |

determine the temperature (in °C) above which the reaction is nonspontaneous under standard conditions.

- A) 150
- B) 432
- C) 133
- D) 1640
- E) 1230

Answer: D

## 7) Given the following table of thermodynamic data,

| Substance             | $\Delta H_{f^{\circ}}$ (kJ/mol) | S° (J/mol·K) |  |
|-----------------------|---------------------------------|--------------|--|
| TiCl <sub>4</sub> (g) | -763.2                          | 354.9        |  |
| TiCl <sub>4</sub> (I) | -804.2                          | 221.9        |  |

complete the following sentence. The vaporization of TiCl<sub>4</sub> is \_\_\_\_\_\_.

- A) spontaneous at all temperatures
- B) spontaneous at low temperature and nonspontaneous at high temperature
- C) nonspontaneous at all temperatures
- D) nonspontaneous at low temperature and spontaneous at high temperature
- E) not enough information given to draw a conclusion

Answer: D

Thermodynamic Quantities for Selected Substances at 298.15 K (25 °C)

| Substance                         | $\Delta H^{\circ}f$ (kJ/mol) | $\Delta G^{\circ}f$ (kJ/mol) | S (J/K-mol) |
|-----------------------------------|------------------------------|------------------------------|-------------|
|                                   |                              | -                            | -           |
| Carbon                            |                              |                              |             |
| C (s, diamond)                    | 1.88                         | 2.84                         | 2.43        |
| C (s, graphite)                   | 0                            | 0                            | 5.69        |
| C <sub>2</sub> H <sub>2</sub> (g) | 226.7                        | 209.2                        | 200.8       |
| $C_2H_4$ (g)                      | 52.30                        | 68.11                        | 219.4       |
| C <sub>2</sub> H <sub>6</sub> (g) | -84.68                       | -32.89                       | 229.5       |
| CO (g)                            | -110.5                       | -137.2                       | 197.9       |
| CO <sub>2</sub> (g)               | -393.5                       | -394.4                       | 213.6       |
| Hydrogen                          |                              |                              |             |
| H <sub>2</sub> (g)                | 0                            | 0                            | 130.58      |
| Oxygen                            |                              |                              |             |
| O <sub>2</sub> (g)                | 0                            | 0                            | 205.0       |
| H <sub>2</sub> O (I)              | -285.83                      | -237.13                      | 69.91       |

8) The combustion of ethene in the presence of excess oxygen yields carbon dioxide and water:

$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$$

The value of  $\Delta S^{\circ}$  for this reaction is \_\_\_\_\_\_ J/K · mol.

$$C) + 140 \circ$$

Answer: E

- 9) Which one of the following processes produces a decrease in the entropy of the system?
  - A) evaporation of liquid ethanol into gaseous ethanol
  - B) mixing of two gases into one container
  - C) melting ice to form water
  - D) freezing of Fe(I) into Fe(s)
  - E) dissolution of LiOH(s) in water

Answer: D

10) The equilibrium constant for the following reaction is  $3.0 \times 10^8$  at 25 °C.

$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$

The value of  $\Delta G^{\circ}$  for this reaction is \_\_\_\_\_ kJ/mol.

Answer: A

| 11) Which                                                                                                                                                                                                                                                                                                                                                    | element is reduce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d in the reaction below                                                                                          | ?                                                    |                     |                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------|--------------------------------------------------|--|
| $Fe(CO)_5$ (I) + 2HI (g) $\rightarrow Fe(CO)_4I_2$ (s) + CO (g) + H <sub>2</sub> (g)                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                      |                     |                                                  |  |
| A) H<br>Answei                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B) Fe                                                                                                            | C) C                                                 | D) O                | E) I                                             |  |
| 12) Which                                                                                                                                                                                                                                                                                                                                                    | of the following re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eactions is a redox reac                                                                                         | tion?                                                |                     |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                              | (a) $K_2CrO_4 + E$<br>(b) $Pb_2^{2+} + 2Br$<br>(c) $Cu + S \rightarrow C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | CI                                                   |                     |                                                  |  |
| A) (a<br>Answe                                                                                                                                                                                                                                                                                                                                               | ) only<br>r: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B) (b) only                                                                                                      | C) (c) only                                          | D) (a) and (c)      | E) (b) and (c)                                   |  |
| 13) What is                                                                                                                                                                                                                                                                                                                                                  | the coefficient of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the permanganate ion                                                                                             | when the following equ                               | uation is balanced? |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                              | MnO <sub>4</sub> - + Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | →Mn <sup>2+</sup> + Br <sub>2</sub> (acio                                                                        | dic solution)                                        |                     |                                                  |  |
| A) 3<br>Answei                                                                                                                                                                                                                                                                                                                                               | r: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B) 1                                                                                                             | C) 2                                                 | D) 4                | E) 5                                             |  |
| A) pr<br>B) m<br>C) pr<br>D) pr                                                                                                                                                                                                                                                                                                                              | rovide a source of alintain electrical in rovide a means for rovide oxygen to forovide a means for rovide a means for row round a means for row row round a means for row round a means fo | ions to react at the and<br>neutrality in the half-co<br>r electrons to travel fro<br>facilitate oxidation at th | ells via migration of ion<br>m the anode to the cath | ode                 |                                                  |  |
| 15) What is<br>A) Li                                                                                                                                                                                                                                                                                                                                         | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e hydrogen fuel cell?<br>B) H <sub>2</sub>                                                                       | C) KOH                                               | D) O <sub>2</sub>   | E) Pt                                            |  |
| 16) One of the differences between a voltaic cell and an electrolytic cell is that in an electrolytic cell,  A) O <sub>2</sub> gas is produced at the cathode  B) an electric current is produced by a chemical reaction  C) oxidation occurs at the cathode  D) electrons flow toward the anode  E) a nonspontaneous reaction is forced to occur  Answer: E |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                      |                     |                                                  |  |
| 17)                                                                                                                                                                                                                                                                                                                                                          | _ is the reducing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | agent in the reaction be                                                                                         | elow.                                                |                     |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                              | $Cr_2O_7^{2-} + 6S_2O_3^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 3S_4O_6^{2-} + 7H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |                                                      |                     |                                                  |  |
| A) S <sub>2</sub><br>Answei                                                                                                                                                                                                                                                                                                                                  | <sub>2</sub> O <sub>3</sub> 2-<br>r: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B) S <sub>4</sub> O <sub>6</sub> <sup>2</sup> -                                                                  | C) Cr <sup>3+</sup>                                  | D) H <sup>+</sup>   | E) Cr <sub>2</sub> O <sub>7</sub> <sup>2</sup> - |  |

Table 20.1

| Half Reaction                                                                          | E°(V)  |
|----------------------------------------------------------------------------------------|--------|
| $F_2$ (g) + 2e <sup>-</sup> $\rightarrow$ 2F <sup>-</sup> (aq)                         | +2.87  |
| $Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$                                                 | +1.359 |
| $Br_2(I) + 2e^- \rightarrow 2Br^-(aq)$                                                 | +1.065 |
| $O_2$ (g) + 4H <sup>+</sup> (aq) + 4e <sup>-</sup> $\rightarrow$ 2H <sub>2</sub> O (I) | +1.23  |
| $Ag^+ + e^- \rightarrow Ag$ (s)                                                        | +0.799 |
| $Fe^{3+}$ (aq) + $e^{-} \rightarrow Fe^{2+}$ (aq)                                      | +0.771 |
| $I_2$ (s) + 2e <sup>-</sup> $\rightarrow$ 2I <sup>-</sup> (aq)                         | +0.536 |
| $Cu^{2+} + 2e^{-} \rightarrow Cu$ (s)                                                  | +0.34  |
| $2H^{+} + 2e^{-} \rightarrow H_{2}(g)$                                                 | 0      |
| $Pb^{2+} + 2e^{-} \rightarrow Pb$ (s)                                                  | -0.126 |
| $Ni^{2+} + 2e^- \rightarrow Ni$ (s)                                                    | -0.28  |
| Li+ + e- →Li (s)                                                                       | -3.05  |

18) Which of the halogens in Table 20.1 is the strongest oxidizing agent?

- A) Br<sub>2</sub>
- B) I<sub>2</sub>
- C) Cl<sub>2</sub>
- D) F<sub>2</sub>
- E) All of the halogens have equal strength as oxidizing agents.

Answer: D

19) Which substance is the oxidizing agent in the reaction below?

Pb + PbO<sub>2</sub> + 
$$2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$$

- A) H<sub>2</sub>SO<sub>4</sub> B) PbO<sub>2</sub> C) Pb
- D) PbSO<sub>4</sub>
- E) H<sub>2</sub>O

Answer: B

Table 20.2

| Half-reaction                                               | E° (V) |
|-------------------------------------------------------------|--------|
| $Cr^{3+}$ (aq) + 3e <sup>-</sup> $\rightarrow$ Cr (s)       | -0.74  |
| $Fe^{2+}$ (aq) + $2e^- \rightarrow Fe$ (s)                  | -0.440 |
| $Fe^{3+}$ (aq) + $e^{-} \rightarrow Fe^{2+}$ (s)            | +0.771 |
| $Sn^{4+}$ (aq) + 2e <sup>-</sup> $\rightarrow Sn^{2+}$ (aq) | +0.154 |

20) The standard cell potential (E°<sub>Cell</sub>) for the voltaic cell based on the reaction below is \_\_\_\_\_\_ V.

$$Sn^{2+}$$
 (aq) +  $2Fe^{3+}$  (aq)  $\rightarrow 2Fe^{2+}$  (aq) +  $Sn^{4+}$  (aq)

- A) -0.46
- B) +0.46 C) +0.617 D) +1.39
- E) +1.21

Answer: C

| 21) Which one of the                                                                                                             | following species is pa                     | ramagnetic?                           |                                   |                           |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|-----------------------------------|---------------------------|
| A) Ag+                                                                                                                           | B) Cr <sup>3+</sup>                         | C) Zn                                 | D) Ca                             | E) Cu+                    |
| Answer: B                                                                                                                        |                                             |                                       |                                   |                           |
| 22) The coordination                                                                                                             | number of cobalt in Co                      | oCl <sub>3</sub> ·6NH <sub>3</sub> is | _·                                |                           |
| A) 2                                                                                                                             | B) 3                                        | C) 4                                  | D) 6                              | E) 8                      |
| Answer: D                                                                                                                        |                                             |                                       |                                   |                           |
| 23) Which of the foll<br>A) [Cu(NH <sub>3</sub> ) <sub>4</sub>                                                                   | owing complexes has a<br>]2+                | coordination number o                 | of 6?                             |                           |
| B) [Ag(NH <sub>3</sub> ) <sub>2</sub>                                                                                            | ]+                                          |                                       |                                   |                           |
| C) [Pt(NH <sub>3</sub> ) <sub>2</sub> (                                                                                          | CI <sub>2</sub> ]                           |                                       |                                   |                           |
| D) [Co(en) <sub>2</sub> Cl <sub>2</sub>                                                                                          | 2]+                                         |                                       |                                   |                           |
| E) None of the                                                                                                                   | ese complexes has coord                     | lination number 6.                    |                                   |                           |
| Answer: D                                                                                                                        |                                             |                                       |                                   |                           |
| 24) Which of the followard A) chloride ion B) hydroxide ion C) oxalate ion D) ammonia E) water Answer: C                         |                                             | ligand?                               |                                   |                           |
|                                                                                                                                  |                                             |                                       |                                   |                           |
| 25) A complex of cor sphere?                                                                                                     | rectly written formula [                    | Pt(NH3)3BrJBr · H2O I                 | nas which set of ligands          | in its inner coordination |
| А) 3 NH <sub>3</sub> , 1 Ві                                                                                                      | r-, and 1 H <sub>2</sub> O                  |                                       |                                   |                           |
| B) 3 NH <sub>3</sub> , 2 Bi                                                                                                      | r-, and 1 H <sub>2</sub> O                  |                                       |                                   |                           |
| C) 3 NH <sub>3</sub>                                                                                                             |                                             |                                       |                                   |                           |
| D) 3 NH <sub>3</sub> and                                                                                                         | 2 Br-                                       |                                       |                                   |                           |
| E) 3 NH <sub>3</sub> and                                                                                                         | 1 Br-                                       |                                       |                                   |                           |
| Answer: E                                                                                                                        |                                             |                                       |                                   |                           |
| <ul><li>A) linkage isor</li><li>B) geometric i</li><li>C) coordinatio</li><li>D) optical ison</li><li>E) rotational is</li></ul> | mers<br>somers<br>on sphere isomers<br>ners | to a metal or be outsic               | le the lattice are called         | ·                         |
| Answer: C                                                                                                                        |                                             |                                       |                                   |                           |
| 27) A metal complex A) yellow Answer: A                                                                                          | absorbs light mainly at<br>B) red           | 420 nm. What is the co                | olor of the complex?<br>D) orange | E) green                  |

| 28) | Complexes containing m A) green Answer: E                                                                                                                     | etals with d <sup>10</sup> el<br>B) yellow            | ectron configurations ar<br>C) blue | re typically  D) violet | E) colorless         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|-------------------------|----------------------|
| 29) | Based on the crystal-field complex below has its d-A) [Ti(H <sub>2</sub> NC <sub>2</sub> H <sub>4</sub> NH <sub>2</sub> B) [TiF <sub>6</sub> ] <sup>3</sup> - | d electronic tran                                     | = -                                 |                         | octahedral Ti (III)  |
|     | C) [Ti(NH <sub>3</sub> ) <sub>6</sub> ] <sup>3+</sup>                                                                                                         |                                                       |                                     |                         |                      |
|     | D) [Ti(H <sub>2</sub> O) <sub>6</sub> ] <sup>3+</sup>                                                                                                         |                                                       |                                     |                         |                      |
|     | E) [TiCl <sub>6</sub> ] <sup>3</sup> -                                                                                                                        |                                                       |                                     |                         |                      |
|     | Answer: A                                                                                                                                                     |                                                       |                                     |                         |                      |
| 30) | The coordination sphere A) the ligands B) the central metal io C) coordination and st D) the primary and sec E) the central metal io Answer: B                | n and the ligand<br>teric numbers<br>condary valencie | s bonded to it                      |                         |                      |
| 31) | How many isomers are p                                                                                                                                        | oossible for C <sub>5</sub> H                         | 12?                                 |                         |                      |
| ·   | A) 1                                                                                                                                                          | B) 4                                                  | C) 3                                | D) 2                    | E) 10                |
|     | Answer: C                                                                                                                                                     |                                                       |                                     |                         |                      |
| 32) | Benzene behaves different<br>would be expected to read<br>A) H <sub>2</sub><br>B) Br <sub>2</sub><br>C) Cl <sub>2</sub><br>D) HCl<br>E) all of the above      |                                                       |                                     | ontains three C=C bond  | s in that the latter |
|     | Answer: E                                                                                                                                                     |                                                       |                                     |                         |                      |
| 33) | Which one of the followi A) cholesterol B) acetone C) ethylene glycol D) glycerol E) ethanol Answer: B                                                        | ng is <u>not</u> an alcol                             | hol?                                |                         |                      |

34) The principal difference between fructose and glucose is that \_\_\_\_\_\_

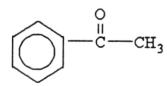
- A) glucose is chiral and fructose is not
- B) fructose is a disaccharide and glucose is a monosaccharide
- C) fructose is a ketone sugar and glucose is an aldehyde sugar
- D) fructose is a monosaccharide and glucose is a disaccharide
- E) fructose is chiral and glucose is not

Answer: C

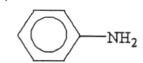
35) The double helix of DNA is stabilized mainly by \_\_\_\_\_.

- A) covalent bonds
- B) ester bonds
- C) ionic bonds
- D) hydrogen bonds
- E) ion-dipole bonds

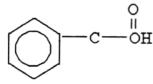
Answer: D


36) The structure of 2,3-dimethylheptane is \_\_\_\_\_.

CH 
$$_3$$
 CH  $_3$  CH  $_3$  CH  $_2$  CH  $_2$  CH  $_2$  CH  $_2$  CH  $_3$  CH  $_3$  CH  $_3$ 


Answer: C

## 37) Which structure below represents an aldehyde?


A)



B)



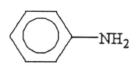
C)



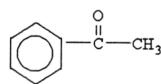
D)

$$CH_3CH_2 \longrightarrow O \longrightarrow CH_2CH_3$$

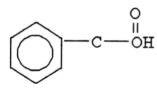
E)


Answer: E

38) Which structure below represents an ether?


A)

$$CH_3CH_2 \longrightarrow O \longrightarrow CH_2CH_3$$


B)



C)



D)



E)

Answer: A

39) Sugars are examples of what type of molecule?

- A) carbohydrates
- B) salts
- C) amino acids
- D) nucleic acids
- E) proteins

Answer: A

40) Which of the following compounds does not contain a C=O bond?

- A) alcohols
- B) carboxylic acids
- C) esters
- D) aldahydes
- E) none of the above

Answer: A