113-2 Semester General Chemistry Midterm Exam(C)-20250409

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) Which of the following could be added to a solution of acetic acid to prepare a buffer?
 - A) sodium hydroxide only
 - B) sodium acetate only
 - C) hydrofluoric acid or nitric acid
 - D) sodium acetate or sodium hydroxide
 - E) nitric acid only

Answer: D

2) Calculate the pH of a solution that is 0.310 M in sodium formate (NaHCO2) and 0.190 M in formic acid (HCO₂H). The K_a of formic acid is 1.77 × 10⁻⁴.

A) 13.79

B) 3.532

C) 10.04

D) 4.975

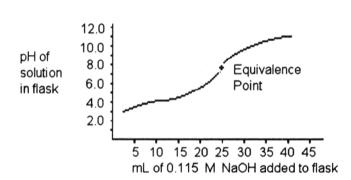
E) 3.958

Answer: E

3) Calculate the percent ionization of formic acid (HCO₂H) in a solution that is 0.152 M in formic acid. The K_a of formic acid is 1.77×10^{-4} .

A) 3.44

B) 0.0180


C) 2.74×10^{-5}

D) 0.581

E) 8.44

Answer: A

4)

A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. The unknown compound is _____.

- A) a weak acid
- B) a strong base
- C) a weak base
- D) a strong acid
- E) neither an acid nor a base

Answer: A

5) A solution of NaF is added dropwise to a solution that is 0.0144 M in Ba²⁺. When the concentration of Fexceeds _____ M, BaF₂ will precipitate. Neglect volume changes. For BaF₂, $K_{SD} = 1.7 \times 10^{-6}$.

A) 1.1×10^{-2}

B) 2.4×10^{-8}

C) 5.9×10^{-5}

D) 1.2×10^{-4}

E) 2.7×10^{-3}

Answer: A

6) What is the molar solubility of manganese carbonate (MnCO3) in water? The solubility-product constant for MnCO₃ is 5.0×10^{-10} at 25 °C.

A) 3.2×10^{-5}

B) 9.30

C) 2.2 × 10⁻⁵

D) 1.0×10^{-9} E) 2.5×10^{-10}

Answer: C

7) Consider the following table of K_{SP} values.

Name	Formula	K _{sp}
Cadmium carbonate	CdCO ₃	5.2 × 10-12
Cadmium hydroxide	Cd(OH) ₂	2.5 × 10-14
Calcium fluoride	CaF ₂	3.9 × 10-11
Silver iodide	AgI	8.3 × 10-17
Zinc carbonate	ZnCO ₃	1.4 × 10-11

	Ziric carbon		211003	1.4 ^ 10					
Which co A) CdC	mpound listed	below has the B) CaF ₂	e greatest	t molar solubi C) ZnCO3	lity in wa	ater? D) Cd(OH) ₂		E) AgI	
Answer:	В								
the additi A) 0.05 B) 0.27 C) 0.43 D) 0.01	ion of 50.0 mL 887 3 60 81 e of the above	-			М КОН :	solution. The H	1 ₃ O+ co	ncentration	ı after
A) CH3 B) CH3 C) CH3 D) CH3	₃ СН ₂ СН ₂ ОН ₃ СН ₂ СН ₂ СН ₂	CH ₂ OH	uble in w	vater?					
A) 2.74 B) 3.05 C) 0.27 D) 4.33	m 5 m 24 m 8 m density of the				·	ochloric acid (I	HCI).		
11) Calculate A) 0.27 Answer:	8	ion of nitric ac B) 3.37	id of a 1	7.5% (by mass C) 0.0607	s) aqueou	us solution of n D) 0.0572	itric acio	d (HNO ₃). E) 1.75	

12) The concentration o				
25 °C is 1.2 x 10- ¹ N	Л. The Henry's law con	stant for CO ₂ at this	temperature is	·
A) 3.0 x 10 ⁻² mol				
B) 4.5 x 10 ⁻³ mol				
C) 2.3 x 10 ⁻² mol				
D) 5.6 x 10 ⁻³ mol				
·	tion is needed to solve	the problem.		
Answer: A				
13) A 1.35 m aqueous so could be compound A) Na ₃ PO ₄	olution of compound X I X? The boiling point e	• .		of the following
B) CaCl ₂				
C) C ₆ H ₁₂ O ₆				
D) KCI				
E) CH ₃ CH ₂ OH				
Answer: D				
14) A solution contains	15 ppm of benzene. Th	ne density of the solut	tion is 1.00 g/mL. This	means that
	15% by mass of benzer			
	lution contains 15 × 10			
. •	lution contains 15 g of	•		
E) 1.0 L of the sol	lution contains 15 g of l	benzene		
Answer: C				
15) The osmotic pressur	re of a solution formed	by dissolving 80.0 m	ng of aspirin (C9H8O4)	in 0.250 L of water a
25 °C is	atm.(R = 0.08206 L-at	tm/K-mol)		
A) 43.5	B) 4.41	C) 0.0435	D) 7.83	E) 3.65×10^{-3}
Answer: C				
16) A solution is prepar	ed by dissolving 24.7 ç	g of CaCl ₂ in 375 g of	water. The density of t	he resulting solution
is 1.05 g/mL. The co	ncentration of CaCl ₂ is	s% by ma	ass.	
A) 6.49	B) 0.0618	C) 0.0649	D) 6.18	E) 6.24
Answer: D				
17) At elevated tempera	atures, dinitrogen pent	oxide decomposes to	nitrogen dioxide and o	xygen:
2N ₂ O ₅ (g)	\rightarrow 4NO ₂ (g) + O ₂ (g)			
When the rate of for	rmation of On is 2.2 × 1	0-4 M/s, the rate of d	lecomposition of N ₂ O ₅	is M/s
A) 2.8×10^{-4}			D) 4.4 × 10 ⁻⁴	
Answer: D	<i>D)</i> 1.1 × 10 ·	C) 5.5 × 10 ·	D) 4.4 × 10 '	L) 2.2 × 10 '
Aliswei. D				

18) - 19) The data in the table below were obtained for the reaction:

$$2 CIO_2 (aq) + 2 OH^- (aq) \rightarrow CIO_3^- (aq) + CIO_2^- (aq) + H_2O (1)$$

Experiment			Initial Rate
Number	[CIO ₂] (M)	[OH-] (M)	(M/s)
1	0.060	0.030	0.0248
2	0.020	0.030	0.00276
3	0.020	0.090	0.00828

18) What is the order of the reaction with respect to CIO₂?

- A) 0
- B) 3
- C) 2
- D) 1
- E) 4

Answer: C

19) What is the magnitude of the rate constant for the reaction?

- A) 713
- B) 230
- C) 115
- D) 1.15×10^4
- E) 4.6

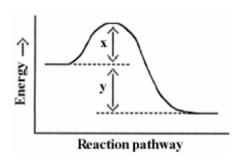
Answer: B

20) The reaction

$$CH_3-N\equiv C \rightarrow CH_3-C\equiv N$$

At 230.3 °C, $k = 6.29 \times 10^{-4} \text{ s}^{-1}$. If $[CH_3 - N \equiv C]$ is 1.00×10^{-3} initially, $[CH_3 - N \equiv C]$ is _____ after 1.000×10^3 s.

- A) 2.34×10^{-4}
- B) 4.27×10^{-3}
- C) 1.88×10^{-3} D) 5.33×10^{-4} E) 1.00×10^{-6}


Answer: D

21) A compound decomposes by a first-order process. If 25.0% of the compound decomposes in 60.0 minutes, the half-life of the compound is __

- A) 65 minutes
- B) 120 minutes
- C) 145 minutes
- D) 198 minutes
- E) 180 minutes

Answer: C

22) Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?

- A) x
- B) y
- C) x + y
- D) y x
- E) x y

Answer: A

23) A possible mechanism for the overall reaction

$$Br_2(g) + 2NO(g) \rightarrow 2NOBr(g)$$

is

NO (g) + Br₂ (g)
$$\underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}}$$
 NOBr₂ (g) (fast)

$$NOBr_2(g) + NO(g) \xrightarrow{k_2} 2NOBr$$
 (slow)

The rate law for formation of NOBr based on this mechanism is rate = _____.

- A) $k_1[NO]^{1/2}$
- B) $(k_2k_1/k^{-1})[NO][Br_2]^2$
- C) $k_1[Br_2]^{1/2}$
- D) $(k_1/k^{-1})^2[NO]^2$
- E) $(k_2k_1/k^{-1})[NO]^2[Br_2]$

Answer: E

24) A particular first-order reaction has a rate constant of 1.35×10^2 s⁻¹ at 25.0 °C. What is the magnitude of k at 75.0° C if $E_a = 60.2 \text{ kJ/mol}$? (R = 8.3145 J/K-mol)

A)
$$4.43 \times 10^3$$

C)
$$2.71 \times 10^6$$
 D) 2.44×10^4

E) 471

Answer: A

25) At equilibrium, _____

- A) the rate constants of the forward and reverse reactions are equal
- B) all chemical reactions have ceased
- C) the rates of the forward and reverse reactions are equal
- D) the value of the equilibrium constant is 1
- E) the limiting reagent has been consumed

Answer: C

26) The value of $K_{\mbox{eq}}$ for the following reaction is 0.25:

$$SO_2(g) + NO_2(g) \Longrightarrow SO_3(g) + NO(g)$$

The value of K_{eq} at the same temperature for the reaction below is _____.

A) 16

B) 0.50

C) 0.063

D) 0.12

E) 0.25

Answer: C

27) Which of the following expressions is the correct equilibrium-constant expression for the reaction below?

$$(NH_4)_2Se(s) \implies 2NH_3(g) + H_2Se(g)$$

- A) 1 / [(NH₄)₂Se]
- B) [NH₃][H₂Se] / [(NH₄)₂Se]
- C) $[NH_3]^2[H_2Se]$
- D) $[(NH_4)_2Se] / [NH_3]^2[H_2Se]$
- E) $[NH_3]^2[H_2Se] / [(NH_4)_2Se]$

Answer: C

28) Consider the following reaction at equilibrium:

$$2CO_2(g) \implies 2CO(g) + O_2(g) \quad \Delta H^\circ = -514 \text{ kJ}$$

Le Châtelier's principle predicts that adding O2 (g) to the reaction container will ______.

- A) increase the partial pressure of CO₂ (g) at equilibrium
- B) increase the value of the equilibrium constant
- C) decrease the partial pressure of CO₂ (g) at equilibrium
- D) decrease the value of the equilibrium constant
- E) increase the partial pressure of CO (g) at equilibrium

Answer: A

29) Phosphorous trichloride and phosphorous pentachloride equilibrate in the presence of molecular chlorine according to the reaction:

$$PCI_3(g) + CI_2(g) \rightarrow PCI_5(g)$$

An equilibrium mixture at 450 K contains

 $P_{PCl_3} = 0.224 atm,$

 $P_{Cl_2} = 0.284$ atm, and

 P_{PCl_5} = 4.24 atm. What is the value of K_p at this temperature?

- A) 1.50×10^{-2}
- B) 2.70 × 10-1
- C) 3.74
- D) 66.7

E) 8.36

Answer: D

30) Dinitrogen tetroxide partially decomposes according to the following equilibrium:

$$N_2O_4$$
 (q) $\rightarrow 2NO_2$ (q)

A 1.000-L flask is charged with 9.20 \times 10⁻³ mol of N₂O₄. At equilibrium, 5.98 \times 10⁻³ mol of N₂O₄ remains. K_{eq} for this reaction is ______.

- A) 0.183
- B) 2.96×10^{-5}
- C) 6.94×10^{-3}
- D) 0.197
- E) 0.212

Answer: C

31) Given the following reaction at equilibrium, if $K_C = 5.84 \times 10^5$ at 230.0 °C, $K_D =$ ______

$$2NO(g) + O_2(g) \implies 2NO_2(g)$$

A) 6.44×10^5 B) 3.67×10^{-2} C) 1.41×10^4 D) 2.41×10^7 E) 2.40×10^6

Answer: C

32) Consider the following reaction at equilibrium:

$$2NH_3(g) \implies N_2(g) + 3H_2(g)$$

Le Châtelier's principle predicts that the moles of H2 in the reaction container will increase with

- A) a decrease in the total volume of the reaction vessel (T constant)
- B) a decrease in the total pressure (T constant)
- C) some removal of NH3 from the reaction vessel (V and T constant)
- D) an increase in total pressure by the addition of helium gas (V and T constant)
- E) addition of some N_2 to the reaction vessel (V and T constant)

Answer: B

33) A Brønsted-Lowry base is defined as a substance that _____

- A) increases [H+] when placed in H₂O
- B) acts as a proton donor
- C) increases [OH-] when placed in H2O
- D) acts as a proton acceptor
- E) decreases [H+] when placed in H2O

Answer: D

34) Of the acids in the table below, _____ is the strongest acid.

Acid	Ka		
HOAc	1.8 × 10 ⁻⁵		
$HCHO_2$	1.8 × 10 ⁻⁴		
HCIO	3.0 × 10-8		
HF	6.8 × 10-4		

- A) HOAc
- B) HF
- C) HCHO₂
- D) HCIO
- E) HOAc and HCHO₂

Answer: B

35) The pH of an aqueous solution at 25.0 °C is 10.40. What is the molarity of H+ in this solution?

A) 2.5×10^{-4}

B) 1.0×10^{-13} C) 3.60

D) 2.5 × 10¹⁰

E) 4.0 × 10-11

Answer: E

36) A 8.0×10^{-3} M aqueous solution of Ca(OH)₂ at 25.0 °C has a pH of ______.

A) 6.3×10^{-13} B) 1.6×10^{-2} C) 11.90

D) 1.80

E) 12.20

Answer: F

,	he K _a of hypochlorous	acid (HCIO) is 3.0 × 10	0-8 at 25.0 °C. Calcula	te the pH of a 0.0335 M	hypochlorous		
	A) 3.02	B) 4.50	C) -3.02	D) 9.50	E) 6.52		
Δ	answer: B						
38) C	38) Calculate the pH of a 0.250 M aqueous solution of NH $_3$. The K $_b$ of NH $_3$ is 1.77 × 10 $^{-5}$.						
	A) 2.08	B) 11.32	C) 2.68	D) 11.92	E) 8.95		
Δ	answer: B						
39) K	39) K _b for NH ₃ is 1.8×10^{-5} . What is the pH of a 0.35 M aqueous solution of NH ₄ Cl at 25.0 °C?						
	A) 11.23	B) 4.85	C) 2.60	D) 9.15	E) 11.40		
Δ	answer: B						
40) Of the following, which is the strongest acid?							
	A) HCIO ₄	B) HCIO ₂	C) HIO	D) HCIO ₃	E) HCIO		
Δ	answer: A						