113-2 Semester General Chemistry Midterm Exam(B)-20250409

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) At equilibrium, ___

A) the rate constants of the forward and reverse reactions are equal

- B) all chemical reactions have ceased
- C) the rates of the forward and reverse reactions are equal
- D) the value of the equilibrium constant is 1
- E) the limiting reagent has been consumed

Answer: C

2) The value of K_{eq} for the following reaction is 0.25:

 $SO_2(g) + NO_2(g) \Longrightarrow SO_3(g) + NO(g)$

The value of K_{eq} at the same temperature for the reaction below is ______.

 $2SO_2(g) + 2NO_2(g) \rightleftharpoons 2SO_3(g) + 2NO(g)$ A) 16 B) 0.50 C) 0.063 D) 0.12 E) 0.25 Answer: C

3) Which of the following expressions is the correct equilibrium-constant expression for the reaction below?

(NH₄)₂Se (s)
$$\implies$$
 2NH₃ (g) + H₂Se (g)

- A) 1 / [(NH4)2Se]
- B) [NH₃][H₂Se] / [(NH₄)₂Se]
- C) [NH₃]²[H₂Se]
- D) [(NH₄)₂Se] / [NH₃]²[H₂Se]
- E) [NH₃]²[H₂Se] / [(NH₄)₂Se]

Answer: C

4) Consider the following reaction at equilibrium:

 $2CO_2(g) \implies 2CO(g) + O_2(g) \qquad \Delta H^\circ = -514 \text{ kJ}$

Le Châtelier's principle predicts that adding O₂ (g) to the reaction container will ______

- A) increase the partial pressure of CO₂ (g) at equilibrium
- B) increase the value of the equilibrium constant
- C) decrease the partial pressure of CO₂ (g) at equilibrium
- D) decrease the value of the equilibrium constant
- E) increase the partial pressure of CO (g) at equilibrium

Answer: A

5) Phosphorous trichloride and phosphorous pentachloride equilibrate in the presence of molecular chlorine according to the reaction:

 $PCI_3(g) + CI_2(g) \rightarrow PCI_5(g)$

An equilibrium mixture at 450 K contains

PPCI₃ = 0.224 atm,

P_{Cl2} = 0.284 atm, and

 P_{PCI_5} = 4.24 atm. What is the value of K_p at this temperature?

A) 1.50 × 10⁻² B) 2.70 × 10⁻¹ C) 3.74 D) 66.7 E) 8.36 Answer: D

6) Dinitrogen tetroxide partially decomposes according to the following equilibrium:

 N_2O_4 (g) $\rightarrow 2NO_2$ (g)

A 1.000-L flask is charged with 9.20×10^{-3} mol of N₂O₄. At equilibrium, 5.98×10^{-3} mol of N₂O₄ remains. K_{eq} for this reaction is ______.

A) 0.183 B) 2.96 × 10⁻⁵ C) 6.94 × 10⁻³ D) 0.197 E) 0.212 Answer: C

7) Given the following reaction at equilibrium, if $K_c = 5.84 \times 10^5$ at 230.0 °C, $K_p =$ ______.

 $2NO(g) + O_2(g) \implies 2NO_2(g)$

A) 6.44 x 10 ⁵	B) 3.67 x 10 ⁻²	C) 1.41 x 10 ⁴	D) 2.41 x 10 ⁷	E) 2.40 x 10 ⁶
Answer: C				

8) Consider the following reaction at equilibrium:

 $2NH_3(g) \implies N_2(g) + 3H_2(g)$

Le Châtelier's principle predicts that the moles of H₂ in the reaction container will increase with

Answer: B

A) a decrease in the total volume of the reaction vessel (T constant)

B) a decrease in the total pressure (T constant)

C) some removal of NH₃ from the reaction vessel (V and T constant)

D) an increase in total pressure by the addition of helium gas (V and T constant)

E) addition of some N_2 to the reaction vessel (V and T constant)

- 9) A Brønsted-Lowry base is defined as a substance that ______.
 - A) increases [H+] when placed in H_2O
 - B) acts as a proton donor
 - C) increases [OH⁻] when placed in H₂O
 - D) acts as a proton acceptor
 - E) decreases [H+] when placed in H_2O

Answer: D

10) Of the acids in the table below, _____ is the strongest acid.

	Acid	K _a			
	HOAc	1.8 × 10 ⁻⁵			
	HCHO ₂	1.8 × 10 ⁻⁴			
	HCIO	3.0 × 10-8			
	HF	6.8 × 10-4			
		•			
A) H	OAc				
в) н С) н	r CHO2				
D) H					
E) H	OAc and H	HCHO ₂			
Answei	r: B				
11) The pH	of an aqu	eous solution at 25.0 °	°C is 10.40. What is the	molarity of H ⁺ in this sol	ution?
A) 2.	5 × 10-4	B) 1.0 × 10 ⁻¹³	C) 3.60	D) 2.5 × 10 ¹⁰	E) 4.0 × 10-11
Answei	r: E				
12) A 8.0 ×	10-3 M ad	queous solution of Ca	(OH) ₂ at 25.0 °C has a	pH of	
Δ) 6	3 × 10-13	B) 1.6 × 10-2	C) 11 90	D) 1.80	F) 12 20
Answei	r F	b) 1.0 × 10	0) 11.70	D) 1.00	L) 12.20
7 110 10					
13) The K _a	of hypoch	lorous acid (HClO) is	3.0 × 10 ⁻⁸ at 25.0 °C.	Calculate the pH of a 0.033	35 M hypochlorous
acid sol	ution.				
A) 3.	02	B) 4.50	C) -3.02	D) 9.50	E) 6.52
Answei	r: B				
14) Calcula	te the pH (of a 0 250 M aqueous	solution of NH2 The	K h of NH2 is 1.77×10^{-5}	
A) 2.	08	B) 11.32	C) 2.68	D) 11.92	E) 8.95
Answei	r: B	·	,	·	·
		-			
15) K _b for I	NH ₃ is 1.8	× 10 ⁻⁵ . What is the p	H of a 0.35 M aqueous	solution of NH ₄ Cl at 25.0	°C?
A) 11	.23	B) 4.85	C) 2.60	D) 9.15	E) 11.40
Answei	r: B				
16) Of the f	ollowing,	which is the strongest	acid?		
A) H	CIO ₄	B) HCIO2	C) HIO	D) HCIO3	E) HCIO
Answei	r: A				

17) Which of the following could be added to a solution of acetic acid to prepare a buffer?

- A) sodium hydroxide only
- B) sodium acetate only
- C) hydrofluoric acid or nitric acid
- D) sodium acetate or sodium hydroxide
- E) nitric acid only

```
Answer: D
```

18) Calculate the pH of a solution that is 0.310 M in sodium formate (NaHCO₂) and 0.190 M in formic acid

(HCO₂H). The K_a of formic acid is 1.77 × 10⁻⁴. A) 13.79 B) 3.532 C) 10.04 D) 4.975 E) 3.958 Answer: E

19) Calculate the percent ionization of formic acid (HCO₂H) in a solution that is 0.152 M in formic acid. The K_a of formic acid is 1.77×10^{-4} .

A) 3.44	B) 0.0180	C) 2.74 × 10 ⁻⁵	D) 0.581	E) 8.44
Answer: A				

20)

A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. The unknown compound is ______.

- A) a weak acid
- B) a strong base
- C) a weak base
- D) a strong acid
- E) neither an acid nor a base

Answer: A

21) A solution of NaF is added dropwise to a solution that is 0.0144 M in Ba²⁺. When the concentration of F⁻ exceeds _____ M, BaF₂ will precipitate. Neglect volume changes. For BaF₂, $K_{SD} = 1.7 \times 10^{-6}$.

A) 1.1 × 10 ⁻²	B) 2.4 × 10 ⁻⁸	C) 5.9 × 10 ⁻⁵	D) 1.2 × 10 ⁻⁴	E) 2.7 × 10-3
Answer: A				

22) What is the molar solubility of manganese carbonate ($MnCO_3$) in water? The solubility-product constant for $MnCO_3$ is 5.0×10^{-10} at 25 °C.

A) 3.2×10^{-5} B) 9.30 C) 2.2×10^{-5} D) 1.0×10^{-9} E) 2.5×10^{-10} Answer: C

23) Consider the following table of K_{SP} values.

Name	Formula	К _{sp}
Cadmium carbonate	CdCO ₃	5.2 × 10-12
Cadmium hydroxide	Cd(OH) ₂	2.5 × 10-14
Calcium fluoride	CaF ₂	3.9 × 10-11
Silver iodide	Agl	8.3 × 10-17
Zinc carbonate	ZnCO3	1.4 × 10-11

Which compound listed below has the greatest molar solubility in water?

•	5	,		
A) CdCO3	B) CaE2	C) ZnCO3	D) Cd(OH)2	F) Aal
.,	2) 04. 2	0) 2110 0 3	2) 80(81.)2	_//.g.

Answer: B

- 24) A 25.0 mL sample of 0.723 M HCIO₄ is titrated with a 0.273 M KOH solution. The H₃O⁺ concentration after the addition of 50.0 mL of KOH is _____ M.
 - A) 0.0587
 - B) 0.273
 - C) 0.430
 - D) 0.0181
 - E) none of the above

Answer: A

- 25) Which one of the following is least soluble in water?
 - A) CH₃CH₂OH
 - B) CH₃CH₂CH₂CH₂CH₂OH
 - C) CH₃OH
 - D) CH₃CH₂CH₂OH
 - E) CH₃CH₂CH₂CH₂OH

Answer: B

26) Calculate the molality of a 10.0% (by mass) aqueous solution of hydrochloric acid (HCI).

- A) 2.74 m
- B) 3.05 m
- C) 0.274 m
- D) 4.33 m

E) The density of the solution is needed to solve the problem.

Answer: B

27) Calculate the mole fraction of nitric acid of a 17.5% (by mass) aqueous solution of nitric acid (HNO₃).

A) 0.278 B) 3.37 C) 0.0607 D) 0.0572 E) 1.75 Answer: D 28) The concentration of CO₂ in a soft drink bottled with a partial pressure of CO₂ of 4.0 atm over the liquid at 25 °C is 1.2×10^{-1} M. The Henry's law constant for CO₂ at this temperature is _____.

A) 3.0 x 10⁻² mol/L-atm

- B) 4.5 x 10⁻³ mol/L-atm
- C) 2.3 x 10-2 mol/L-atm
- D) 5.6 x 10⁻³ mol/L-atm
- E) More information is needed to solve the problem.

Answer: A

- 29) A 1.35 m aqueous solution of compound X had a boiling point of 101.4 °C. Which one of the following could be compound X? The boiling point elevation constant for water is 0.52 °C/m.
 - A) Na₃PO₄
 - B) CaCl₂
 - C) C₆H₁₂O₆
 - D) KCI
 - E) CH₃CH₂OH

Answer: D

30) A solution contains 15 ppm of benzene. The density of the solution is 1.00 g/mL. This means that

- A) the solution is 15% by mass of benzene
- B) there are 15 mg of benzene in 1.0 g of this solution
- C) 1.0 g of the solution contains 15×10^{-6} g of benzene
- D) 100 g of the solution contains 15 g of benzene
- E) 1.0 L of the solution contains 15 g of benzene

Answer: C

31) The osmotic pressure of a solution formed by dissolving 80.0 mg of aspirin (C9H8O4) in 0.250 L of water at

25 °C is _____ atm.(R = 0.08206 L-atm/K-mol) A) 43.5 B) 4.41 C) 0.0435 D) 7.83 E) 3.65×10^{-3} Answer: C

32) A solution is prepared by dissolving 24.7 g of CaCl₂ in 375 g of water. The density of the resulting solution is 1.05 g/mL. The concentration of CaCl₂ is _____% by mass.

A) 6.49	B) 0.0618	C) 0.0649	D) 6.18	E) 6.24
Answer: D				

33) At elevated temperatures, dinitrogen pentoxide decomposes to nitrogen dioxide and oxygen:

 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

When the rate of form	mation of O_2 is 2.2 × 10) ⁻⁴ M/s, the rate of de	composition of N_2O_5 i	s M/s.
A) 2.8 × 10 ⁻⁴	B) 1.1 × 10 ⁻⁴	C) 5.5 × 10 ⁻⁴	D) 4.4 × 10 ⁻⁴	E) 2.2 × 10 ⁻⁴
Answer: D				

 $2 \operatorname{CIO}_2(\operatorname{aq}) + 2 \operatorname{OH}^-(\operatorname{aq}) \rightarrow \operatorname{CIO}_3^-(\operatorname{aq}) + \operatorname{CIO}_2^-(\operatorname{aq}) + \operatorname{H}_2 \operatorname{O}(1)$

	Experiment			Initial Rate		
	Number	[CIO ₂] (M)	[OH-] (M)	(M/s)		
	1	0.060	0.030	0.0248		
	2	0.020	0.030	0.00276		
	3	0.020	0.090	0.00828		
34) What is the order o	f the reaction	with respect	to CIO ₂ ?			
A) 0	B) 3		C) 2		D) 1	E) 4
Answer: C						
35) What is the magnite	ude of the rat	e constant fo	r the reactio	n?		
A) 713	B) 230		C) 115		D) 1.15 × 10 ⁴	E) 4.6
Answer: B						
36) The reaction						
CH ₃ -N≡C	→CH3-C≡N					
At 230.3 °C, k = 6.2	9 × 10 ⁻⁴ s ⁻¹ .	If [CH3−N≡	≡C] is 1.00 ×	10 ⁻³ initiall	y, [CH ₃ −N≡C] is	after
1 000 × 10 ³ s		Ū				
A) 2.34 × 10 ⁻⁴	B) 4.27	× 10-3	C) 1.88 ×	10-3	D) 5.33 × 10 ⁻⁴	E) 1.00 × 10-6
Answer: D	_,		•)		_,	_,
37) A compound decor the half-life of the c	mposes by a f compound is	irst-order pr 	ocess. If 25.0)% of the cor	mpound decomposes i	n 60.0 minutes,

A) 65 minutes B) 120 minutes C) 145 minutes D) 198 minutes E) 180 minutes Answer: C

38) Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?

Answer: A

39) A possible mechanism for the overall reaction

$$Br_2(g) + 2NO(g) \rightarrow 2NOBr(g)$$

is

NO (g) + Br₂ (g) $\stackrel{k_1}{\underset{k=1}{\leftarrow}}$ NOBr₂ (g) (fast) NOBr₂ (g) + NO (g) $\stackrel{k_2}{\underset{k=1}{\leftarrow}}$ 2NOBr (slow)

The rate law for formation of NOBr based on this mechanism is rate = _____.

A) k₁[NO]^{1/2}

B) (k₂k₁/k⁻¹)[NO][Br₂]²

C) k₁[Br₂]^{1/2}

D) (k₁/k⁻¹)²[NO]²

E) (k₂k₁/k⁻¹)[NO]²[Br₂]

Answer: E

40) A particular first-order reaction has a rate constant of 1.35×10^2 s⁻¹ at 25.0 °C. What is the magnitude of k at 75.0 °C if E_a = 60.2 kJ/mol? (R = 8.3145 J/K-mol)

A) 4.43×10^3 B) 1.35×10^2 C) 2.71×10^6 D) 2.44×10^4 E) 471 Answer: A