113-2 Semester General Chemistry Midterm Exam(A)-20250409

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) Which one of the following is least soluble in water?
 - A) CH₃CH₂OH
 - B) CH₃CH₂CH₂CH₂CH₂OH
 - C) CH₃OH
 - D) CH₃CH₂CH₂OH
 - E) CH₃CH₂CH₂CH₂OH

Answer: B

2) Calculate the molality of a 10.0% (by mass) aqueous solution of hydrochloric acid (HCI).

- A) 2.74 m
- B) 3.05 m
- C) 0.274 m
- D) 4.33 m
- E) The density of the solution is needed to solve the problem.

Answer: B

- 3) Calculate the mole fraction of nitric acid of a 17.5% (by mass) aqueous solution of nitric acid (HNO₃).
 A) 0.278
 B) 3.37
 C) 0.0607
 D) 0.0572
 E) 1.75
 Answer: D
- 4) The concentration of CO_2 in a soft drink bottled with a partial pressure of CO_2 of 4.0 atm over the liquid at

25 °C is 1.2 x 10⁻¹ M. The Henry's law constant for CO₂ at this temperature is _____.

- A) 3.0 x 10⁻² mol/L-atm
- B) 4.5 x 10⁻³ mol/L-atm
- C) 2.3 x 10-2 mol/L-atm
- D) 5.6 x 10-3 mol/L-atm
- E) More information is needed to solve the problem.

Answer: A

- 5) A 1.35 m aqueous solution of compound X had a boiling point of 101.4 °C. Which one of the following could be compound X? The boiling point elevation constant for water is 0.52 °C/m.
 - A) Na₃PO₄
 - B) CaCl₂
 - C) C₆H₁₂O₆
 - D) KCI
 - E) CH₃CH₂OH

Answer: D

6) A solution contains 15 ppm of benzene. The density of the solution is 1.00 g/mL. This means that

- C) 1.0 g of the solution contains 15×10^{-6} g of benzene
- D) 100 g of the solution contains 15 g of benzene
- E) 1.0 L of the solution contains 15 g of benzene

Answer: C

A) the solution is 15% by mass of benzene

B) there are 15 mg of benzene in 1.0 g of this solution

7) The osmotic pressure of a solution formed by dissolving 80.0 mg of aspirin (C9H8O4) in 0.250 L of water at 25 °C is _____ atm.(R = 0.08206 L-atm/K-mol)

A) 43.5 B) 4.41 C) 0.0435 D) 7.83 E) 3.65 × 10⁻³ Answer: C

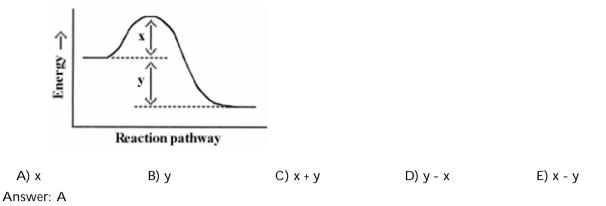
8) A solution is prepared by dissolving 24.7 g of CaCl₂ in 375 g of water. The density of the resulting solution is 1.05 g/mL. The concentration of CaCl₂ is _____% by mass.

9) At elevated temperatures, dinitrogen pentoxide decomposes to nitrogen dioxide and oxygen:

 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

When the rate of formation of O₂ is 2.2×10^{-4} M/s, the rate of decomposition of N₂O₅ is _____ M/s. A) 2.8×10^{-4} B) 1.1×10^{-4} C) 5.5×10^{-4} D) 4.4×10^{-4} E) 2.2×10^{-4} Answer: D

10) - 11) The data in the table below were obtained for the reaction:


$$2 \operatorname{CIO}_2(\operatorname{aq}) + 2 \operatorname{OH}^-(\operatorname{aq}) \rightarrow \operatorname{CIO}_3^-(\operatorname{aq}) + \operatorname{CIO}_2^-(\operatorname{aq}) + \operatorname{H}_2\operatorname{O}(1)$$

	Experiment			Initial Rate		
	Number	[CIO ₂] (M)	[OH-] (M)	(M/s)		
	1	0.060	0.030	0.0248		
	2	0.020	0.030	0.00276		
	3	0.020	0.090	0.00828		
10) What is the order of the reaction with respect to CIO ₂ ?						
A) 0	B) 3		C) 2		D) 1	E) 4
Answer: C						
11) What is the magnitu A) 713	ude of the rat B) 230	e constant fo	r the reactio C) 115	n?	D) 1.15 × 10 ⁴	E) 4.6
Answer: B						
12) The reaction						
$CH_3-N=C \rightarrow CH_3-C=N$						
At 230.3 °C, k = $6.29 \times 10^{-4} \text{ s}^{-1}$. If [CH ₃ -N=C] is 1.00×10^{-3} initially, [CH ₃ -N=C] is after						
1.000 × 10 ³ s.						
A) 2.34 × 10 ⁻⁴	B) 4.27	× 10-3	C) 1.88 × 1	10-3	D) 5.33 × 10-4	E) 1.00 × 10-6
Answer: D						
13) A compound decomposes by a first-order process. If 25.0% of the compound decomposes in 60.0 minutes						

13) A compound decomposes by a first-order process. If 25.0% of the compound decomposes in 60.0 minutes, the half-life of the compound is ______.

A) 65 minutes B) 120 minutes C) 145 minutes D) 198 minutes E) 180 minutes Answer: C

14) Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?

15) A possible mechanism for the overall reaction

$$Br_2(g) + 2NO(g) \rightarrow 2NOBr(g)$$

is

NO (g) + Br₂ (g)
$$\stackrel{k_1}{\underset{k=1}{\longrightarrow}}$$
 NOBr₂ (g) (fast)
NOBr₂ (g) + NO (g) $\stackrel{k_2}{\underset{k=1}{\longrightarrow}}$ 2NOBr (slow)

The rate law for formation of NOBr based on this mechanism is rate = _____.

A) k₁[NO]^{1/2}

B) (k₂k₁/k⁻¹)[NO][Br₂]²

C) k₁[Br₂]^{1/2}

D) $(k_1/k^{-1})^2[NO]^2$

E) (k₂k₁/k⁻¹)[NO]²[Br₂]

Answer: E

16) A particular first-order reaction has a rate constant of 1.35×10^2 s⁻¹ at 25.0 °C. What is the magnitude of k at 75.0 °C if E_a = 60.2 kJ/mol? (R = 8.3145 J/K-mol)

A) 4.43 × 10³ B) 1.35 × 10² C) 2.71 × 10⁶ D) 2.44 × 10⁴ E) 471 Answer: A

17) At equilibrium, _____.

A) the rate constants of the forward and reverse reactions are equal

- B) all chemical reactions have ceased
- C) the rates of the forward and reverse reactions are equal
- D) the value of the equilibrium constant is 1
- E) the limiting reagent has been consumed

Answer: C

18) The value of K_{eq} for the following reaction is 0.25:

 $SO_2(g) + NO_2(g) \implies SO_3(g) + NO(g)$

The value of K_{eq} at the same temperature for the reaction below is _____.

$$2SO_2(g) + 2NO_2(g) \rightleftharpoons 2SO_3(g) + 2NO(g)$$

A) 16 B) 0.50 C) 0.063 D) 0.12 E) 0.25

Answer: C

19) Which of the following expressions is the correct equilibrium-constant expression for the reaction below?

$$(NH_4)_2Se(s) \implies 2NH_3(g) + H_2Se(g)$$

A) 1 / [(NH4)₂Se] B) [NH₃][H₂Se] / [(NH₄)₂Se] C) [NH₃]²[H₂Se] D) [(NH₄)₂Se] / [NH₃]²[H₂Se] E) [NH₃]²[H₂Se] / [(NH₄)₂Se]

Answer: C

20) Consider the following reaction at equilibrium:

 $2CO_2(g) \implies 2CO(g) + O_2(g) \quad \Delta H^\circ = -514 \text{ kJ}$

Le Châtelier's principle predicts that adding O2 (g) to the reaction container will ______

A) increase the partial pressure of CO₂ (g) at equilibrium

- B) increase the value of the equilibrium constant
- C) decrease the partial pressure of CO₂ (g) at equilibrium
- D) decrease the value of the equilibrium constant
- E) increase the partial pressure of CO (g) at equilibrium

Answer: A

21) Phosphorous trichloride and phosphorous pentachloride equilibrate in the presence of molecular chlorine according to the reaction:

$$PCI_3$$
 (g) + CI_2 (g) $\rightarrow PCI_5$ (g)

An equilibrium mixture at 450 K contains

 $PPCI_3 = 0.224 atm,$

 $P_{Cl_2} = 0.284$ atm, and

 P_{PCI_5} = 4.24 atm. What is the value of K_p at this temperature?

A) 1.50 × 10⁻² B) 2.70 × 10⁻¹ C) 3.74 D) 66.7 E) 8.36 Answer: D 22) Dinitrogen tetroxide partially decomposes according to the following equilibrium:

 N_2O_4 (g) $\rightarrow 2NO_2$ (g)

A 1.000-L flask is charged with 9.20 × 10^{-3} mol of N₂O₄. At equilibrium, 5.98 × 10^{-3} mol of N₂O₄ remains. K_{eq} for this reaction is ______.

A) 0.183 B) 2.96 × 10⁻⁵ C) 6.94 × 10⁻³ D) 0.197 E) 0.212

Answer: C

23) Given the following reaction at equilibrium, if $K_c = 5.84 \times 10^5$ at 230.0 °C, $K_p =$ ______.

 $2NO (g) + O_2 (g) \rightleftharpoons 2NO_2 (g)$ A) 6.44 x 10⁵ B) 3.67 x 10⁻² C) 1.41 x 10⁴ D) 2.41 x 10⁷ E) 2.40 x 10⁶ Answer: C

24) Consider the following reaction at equilibrium:

 $2NH_3(g) \implies N_2(g) + 3H_2(g)$

Le Châtelier's principle predicts that the moles of H₂ in the reaction container will increase with

A) a decrease in the total volume of the reaction vessel (T constant)

B) a decrease in the total pressure (T constant)

C) some removal of NH₃ from the reaction vessel (V and T constant)

D) an increase in total pressure by the addition of helium gas (V and T constant)

E) addition of some N_2 to the reaction vessel (V and T constant)

Answer: B

25) A Brønsted-Lowry base is defined as a substance that _____.

A) increases $[H^+]$ when placed in H_2O

B) acts as a proton donor

C) increases [OH⁻] when placed in H₂O

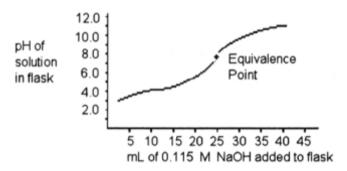
D) acts as a proton acceptor

E) decreases $[H^+]$ when placed in H_2O

Answer: D

26) Of the acids in the table below, _____ is the strongest acid.

	Acid HOAc	K_a 1.8 × 10 ⁻⁵			
	_	1.8 × 10 ⁻⁴			
	HCIO HF	3.0 × 10 ⁻⁸ 6.8 × 10 ⁻⁴			
D) Ho	OAc F CHO ₂ CIO OAc and H				
7 (15000)	. 0				
	5 × 10-4	eous solution at 25.0 °C is 1 B) 1.0 × 10 ⁻¹³	0.40. What is the r C) 3.60	molarity of H+ in this solut D) 2.5 × 10 ¹⁰	ion? E) 4.0 × 10-11
28) A 8.0 × 1	10-3 Mad	ueous solution of Ca(OH);	o at 25.0 °C has a	pH of	
	3 × 10-13	B) 1.6 × 10-2	C) 11.90	D) 1.80	E) 12.20
29) The K _a acid sole		orous acid (HCIO) is 3.0 ×		alculate the pH of a 0.0335	M hypochlorous
A) 3.0		B) 4.50	C) -3.02	D) 9.50	E) 6.52
Answer	: В				
30) Calculat	te the pH c	of a 0.250 M aqueous soluti	on of NH_3 . The K	b of NH ₃ is 1.77 × 10 ⁻⁵ .	
A) 2.0	08	B) 11.32	C) 2.68	D) 11.92	E) 8.95
Answer	: В				
31) Kip for M	NH2 is 1.8	× 10 ⁻⁵ . What is the pH of a	0.35 M aqueous s	solution of NH4CI at 25.0 °	C?
A) 11	•	B) 4.85	C) 2.60	D) 9.15	E) 11.40
Answer	: В				
32) Of the fe A) He	0	vhich is the strongest acid? B) HClO ₂	C) HIO	D) HClO3	E) HCIO
Answer	: A				
 33) Which of the following could be added to a solution of acetic acid to prepare a buffer? A) sodium hydroxide only B) sodium acetate only C) hydrofluoric acid or nitric acid D) sodium acetate or sodium hydroxide E) nitric acid only Answer: D 					


34) Calculate the pH of a solution that is 0.310 M in sodium formate (NaHCO₂) and 0.190 M in formic acid

(HCO₂H). The K_a of formic acid is 1.77 × 10⁻⁴. A) 13.79 B) 3.532 C) 10.04 D) 4.975 E) 3.958 Answer: E

35) Calculate the percent ionization of formic acid (HCO₂H) in a solution that is 0.152 M in formic acid. The K_a of formic acid is 1.77×10^{-4} .

A) 3.44 B) 0.0180 C) 2.74 × 10⁻⁵ D) 0.581 E) 8.44 Answer: A

36)

A 25.0 mL sample of a solution of an unknown compound is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. The unknown compound is ______.

- A) a weak acid
- B) a strong base
- C) a weak base
- D) a strong acid

E) neither an acid nor a base

Answer: A

37) A solution of NaF is added dropwise to a solution that is 0.0144 M in Ba²⁺. When the concentration of F⁻ exceeds _____ M, BaF₂ will precipitate. Neglect volume changes. For BaF₂, $K_{SD} = 1.7 \times 10^{-6}$.

A) 1.1 × 10⁻² B) 2.4 × 10⁻⁸ C) 5.9 × 10⁻⁵ D) 1.2 × 10⁻⁴ E) 2.7 × 10⁻³ Answer: A

38) What is the molar solubility of manganese carbonate (MnCO₃) in water? The solubility-product constant for MnCO₃ is 5.0×10^{-10} at 25 °C.

A) 3.2 × 10⁻⁵ B) 9.30 C) 2.2 × 10⁻⁵ D) 1.0 × 10⁻⁹ E) 2.5 × 10⁻¹⁰ Answer: C 39) Consider the following table of K_{SP} values.

Name	Formula	К _{sp}
Cadmium carbonate	CdCO ₃	5.2 × 10-12
Cadmium hydroxide	Cd(OH) ₂	2.5 × 10 ⁻¹⁴
Calcium fluoride	CaF ₂	3.9 × 10-11
Silver iodide	Agl	8.3 × 10-17
Zinc carbonate	ZnCO3	1.4 × 10-11

Which compound listed below has the greatest molar solubility in water?

A) CdCO ₃	B) CaF ₂	C) ZnCO3	D) Cd(OH) ₂	E) Agl
P				

Answer: B

- 40) A 25.0 mL sample of 0.723 M HCIO₄ is titrated with a 0.273 M KOH solution. The H₃O⁺ concentration after the addition of 50.0 mL of KOH is ______ M.
 - A) 0.0587
 - B) 0.273
 - C) 0.430
 - D) 0.0181
 - E) none of the above

Answer: A