112-2 semester General Chemistry Midterm Exam (B) -20240417

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) At equilibrium, ___

- A) all chemical reactions have ceased
- B) the rate constants of the forward and reverse reactions are equal
- C) the rates of the forward and reverse reactions are equal
- D) the value of the equilibrium constant is 1
- E) the limiting reagent has been consumed

Answer: C

2) Which one of the following will change the value of an equilibrium constant?

- A) changing the volume of the reaction vessel
- B) adding other substances that do not react with any of the species involved in the equilibrium
- C) varying the initial concentrations of products
- D) varying the initial concentrations of reactants
- E) changing temperature

Answer: E

3) The K_{eq} for the equilibrium below is 7.52×10^{-2} at 480.0 °C.

2Cl₂ (g) + 2H₂O (g) = 4HCl (g) + O₂ (g)

What is the value of K_{eq} at this temperature for the following reaction?

2HCl (g) +
$$\frac{1}{2}$$
O₂ (g) \rightleftharpoons Cl₂ (g) + H₂O (g)
A) 0.274 B) 3.65 C) 5.66 × 10⁻³ D) 13.3 E) -0.0376
Answer: B

4) Given the following reaction at equilibrium, if $K_c = 1.90 \times 10^{19}$ at 25.0 °C, $K_p =$ _____.

A) 1.90×10^{19} B) 1.56×10^{4} C) 5.26×10^{-20} D) 6.44×10^{5} E) none of the above Answer: A 5) Which of the following expressions is the correct equilibrium-constant expression for the reaction below?

 $HF (aq) + H_2O (I) \Longrightarrow H_3O^+ (aq) + F^- (aq)$

A) [HF][H₂O] / [H₃O+][F⁻] B) [F⁻] / [HF] C) [H₃O⁺][F⁻] / [HF] D) 1 / [HF] E) [H₃O⁺][F⁻] / [HF][H₂O]

Answer: C

6) Which of the following statements is true?

A) K_{eq} does not change with temperature, whereas Q is temperature dependent.

B) Q is the same as Keq when a reaction is at equilibrium.

C) Q does not depend on the concentrations or partial pressures of reaction components.

D) K does not depend on the concentrations or partial pressures of reaction components.

E) Q does not change with temperature.

Answer: B

7) Which reaction will shift to the left in response to a decrease in volume?

A) $2 \text{ SO}_3 (g) \implies 2 \text{ SO}_2 (g) + \text{O}_2 (g)$

B) 2HI (g) 🛁 H₂ (g) + I₂ (g)

C) 4 Fe (s) + 3 O₂ (g) = 2 Fe₂O₃ (s)

D) H₂ (g) + Cl₂ (g) = 2 HCl (g)

E) N₂ (g) + 3H₂ (g) = 2 NH₃ (g)

Answer: A

8) Consider the following reaction at equilibrium:

2NH₃ (g) \rightleftharpoons N₂ (g) + 3H₂ (g)

Le Châtelier's principle predicts that the moles of H₂ in the reaction container will increase with ______

A) a decrease in the total pressure (T constant)

B) a decrease in the total volume of the reaction vessel (T constant)

C) some removal of NH₃ from the reaction vessel (V and T constant)

D) an increase in total pressure by the addition of helium gas (V and T constant)

E) addition of some N₂ to the reaction vessel (V and T constant)

Answer: A

9) Consider the following reaction at equilibrium:

 $2CO_2(g) \implies 2CO(g) + O_2(g)$ $\Delta H^\circ = -514 \text{ kJ}$

Le Châtelier's principle predicts that a decrease in temperature will _____.

A) decrease the partial pressure of O₂ (g)

- B) decrease the partial pressure of CO
- C) decrease the value of the equilibrium constant
- D) increase the value of the equilibrium constant
- E) increase the partial pressure of CO₂ (g)

Answer: D

10) The effect of a catalyst on an equilibrium is to _____.

- A) increase the equilibrium constant so that products are favored
- B) slow the reverse reaction only
- C) increase the rate at which equilibrium is achieved without changing the composition of the equilibrium mixture
- D) increase the rate of the forward reaction only
- E) shift the equilibrium to the right

Answer: C

11) Which one of the following is a Brønsted-Lowry acid?

A) CH₃COOH

B) HNO₂

C) HF

- D) (CH₃)₃NH⁺
- E) all of the above

Answer: E

12) Which one of the following statements regarding K_W is <u>false</u>?

A) The value of K_W shows that water is a weak acid.

B) pK_W is 14.00 at 25 °C.

- C) The value of K_W is always 1.0×10^{-14} .
- D) K_W changes with temperature.
- E) K_W is known as the ion product of water.

Answer: C

13) The hydride ion, H⁻, is a stronger base than the hydroxide ion, OH⁻. The product(s) of the reaction of hydride ion with water is/are _____.

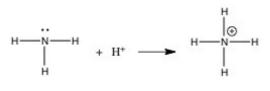
A) H_2O_2 (aq) B) OH^- (aq) + H_2 (g) C) H_3O^+ (aq) D) no reaction occurs E) OH^- (aq) + $2H^+$ (aq)

Answer: B

14) The K_a of hypochlorous acid (HCIO) is 3.0×10^{-8} at 25.0 °C. What is the percent ionization of hypochlorous acid in a 0.015 M aqueous solution of HCIO at 25.0 °C?

A) 4.5 × 10⁻⁸ B) 14 C) 1.4 × 10⁻³ D) 2.1 × 10⁻⁵ E) 0.14 Answer: E

15) HA is a weak acid. Which equilibrium corresponds to the equilibrium constant Kb for A-?


A) HA (aq) + OH⁻ (aq) \rightleftharpoons H₂O (l) + H⁺ (aq) B) HA (aq) + H₂O (l) \rightleftharpoons H₂A⁺ (aq) + OH⁻ (aq) C) A⁻ (aq) + OH⁻ (aq) \rightleftharpoons HOA²⁻ (aq) D) A⁻ (aq) + H₂O (l) \rightleftharpoons HA (aq) + OH⁻ (aq) E) A⁻ (aq) + H₃O⁺ (aq) \rightleftharpoons HA (aq) + H₂O (l)

Answer: D

16) Using the data in the table, which of the conjugate acids below is the strongest acid?

Base	к _b			
CIO-	3.3 × 10-7			
CO3-2	1.8 × 10 ⁻⁴			
HS-	1.8 × 10 ⁻⁷			
NH ₂ CH ₃	4.4 × 10 ⁻⁴			
A) HCIO				
B) H ₂ S				
C) NH3CH3 ⁺	-			
D) HCO3-				
E) H ₂ S and H	ICIO			
Answer: B				
17) An aqueous solu	ution of a particular comp	ound has pH = 7.46. The o	compound is	
Á) a strong ad		C) a strong base	D) a weak acid	E) a weak base
Answer: E				
18) Of the compour	nds below, a 0.1 M aqueou	s solution of wil	II have the <u>highest</u> pH.	
A) NaClO, Ka	a of HCIO = 3.2×10^{-8}			
B) NH4NO3,	$K_b \text{ of } NH_3 = 1.8 \times 10^{-5}$			
C) KCN, K _a (of HCN = 4.0 × 10-10			
D) NaHS, K _b	of HS ⁻ = 1.8 × 10 ⁻⁷			
E) NaOAc, K	a of HOAc = 1.8 × 10 ⁻⁵			
Answer: C	-			
19) Of the following	, which is the strongest a	rid?		
A) HClO ₃	B) HClO4	C) HCIO ₂	D) HCIO	E) HIO
Answer: B				

20) In the gas phase reaction below, NH₃ is acting as a(n) ______

A) Lewis base
B) Lewis acid
C) Brønsted-Lowry base
D) Arrhenius acid
E) Brønsted-Lowry acid

Answer: A

21) Which one of the following pairs <u>cannot</u> be mixed together to form a buffer solution?

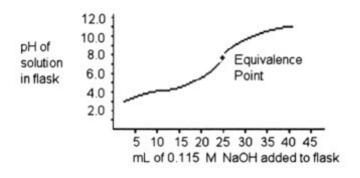
- A) NaCI, HCI
- B) RbOH, HF
- C) H₂SO₃, KHSO₃
- D) KOH, HNO₂
- E) HONH₂, HONH₃CI

Answer: A

- 22) What change will be caused by addition of a small amount of HCl to a solution containing fluoride ions and hydrogen fluoride?
 - A) The concentration of hydrogen fluoride will decrease and the concentration of fluoride ions will increase.
 - B) The concentration of fluoride ion will decrease and the concentration of hydrogen fluoride will increase.
 - C) The concentration of fluoride ions will increase as will the concentration of hydronium ions.
 - D) The concentration of hydronium ions will increase significantly.
 - E) The fluoride ions will precipitate out of solution as its acid salt.

Answer: B

23) In a solution, when the concentrations of a weak acid and its conjugate base are equal, ______.


- A) the buffering capacity is significantly decreased
- B) the system is not at equilibrium
- C) the -log of the [H+] and the -log of the Ka are equal
- D) All of the above are true.

Answer: C

24) Which solution has the greatest buffering capacity?

- A) 0.085 M NH3 and 0.090 M NH4CI
- B) 0.540 M NH₃ and 0.550 M NH₄Cl
- C) 0.200 M NH₃ and 0.565 M NH₄Cl
- D) 0.335 M NH₃ and 0.100 M NH₄Cl
- E) They are all buffer solutions and would all have the same capacity.

Answer: B

25) A 50.0 mL sample of a solution of a monoprotic acid is titrated with a 0.115 M NaOH solution. The titration
curve above was obtained. The concentration of the monoprotic acid is about _____ mol/L.
A) 0.120 B) 0.0600 C) 0.240 D) 25.0 E) 0.100
Answer: B

Consider the following table of K_{SD} values.

Name	Formula	К _{sp}
Cadmium carbonate	CdCO3	5.2 × 10 ⁻¹²
Cadmium hydroxide	Cd(OH) ₂	2.5 × 10 ⁻¹⁴
Calcium fluoride	CaF ₂	3.9 × 10-11
Silver iodide	Agl	8.3 × 10-17
Zinc carbonate	ZnCO3	1.4 × 10-11

26) Which compound listed below has the greatest molar solubility in water?

A) Cd(OH) ₂	B) ZnCO3	C) CaF ₂	D) Agl	E) CdCO3
A polyopy C				

Answer: C

27) In which one of the following solutions is silver chloride the most soluble?

A) 0.200 M HCI B) 0.0150 M NH₃ C) pure H₂O D) 0.750 M LiNO₃ E) 0.185 M KCI

Answer: B

28) A result of the common-ion effect is _____

- A) that ions such as K⁺ and Na⁺ are common ions, so that their values in equilibrium constant expressions are always 1.00
- B) that some ions, such as Na⁺ (aq), frequently appear in solutions but do not participate in solubility equilibria
- C) that common ions precipitate all counter-ions
- D) that common ions, such as Na⁺ (aq), don't affect equilibrium constants
- E) that the selective precipitation of a metal ion, such as Ag⁺, is promoted by the addition of an appropriate counterion (X⁻) that produces a compound (AgX) with a very low solubility

Answer: E

29) Calculate the pH of a solution that is 0.278 M in sodium formate (NaHCO₂) and 0.222 M in formic acid

(HCO₂H). The K_a of formic acid is 1.77×10^{-4} . A) 10.16 B) 4.954 C) 3.647 D) 3.843 E) 13.90 Answer: D

30) When argon is placed in a container of neon, the argon spontaneously disperses throughout the neon because

A) of the large attractive forces between argon and neon atoms

B) of solvent-solute interactions

C) the dispersion of argon atoms produces an increase in disorder

D) of hydrogen bonding

E) a decrease in energy occurs when the two mix

Answer: C

31) In a saturated solution of a salt in water, ____

- A) the rate of crystallization > the rate of dissolution
- B) addition of more water causes massive crystallization
- C) the rate of crystallization = the rate of dissolution
- D) the rate of dissolution > the rate of crystallization
- E) seed crystal addition may cause massive crystallization

Answer: C

32) The solubility of nitrogen gas at 25 °C and 101.325 kPa is 6.8×10^{-4} mol/L. If the partial pressure of nitrogen gas in air is 77.01 kPa, what is the concentration (molarity) of dissolved nitrogen?

A) 6.8 × 10⁻⁴ M B) 5.2 × 10⁻⁴ M C) 3.8 × 10⁻⁴ M D) 1.1 × 10⁻⁵ M E) 4.9 × 10⁻⁴ M Answer: B

33) Which of the following statements is false?

A) Nonpolar liquids tend to be insoluble in polar liquids.

B) The solubility of gases in water decreases with increasing temperature.

- C) The solubility of a gas increases in direct proportion to its partial pressure above the solution.
- D) The weaker the attraction between the solute and solvent molecules, the greater the solubility.

E) Substances with similar intermolecular attractive forces tend to be soluble in one another.

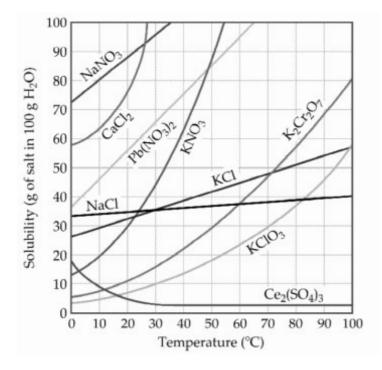
Answer: D

34) Which one of the following concentration units varies with temperature?

- A) molality
- B) molarity
- C) mass percent
- D) mole fraction
- E) all of the above

Answer: B

35) The magnitudes of K_f and of K_b depend on the identity of the _____.


- A) solution
- B) solute
- C) solute and solvent
- D) solvent
- E) solvent and on temperature

Answer: D

36) Which of the following liquids will have the lowest freezing point?

- A) pure H₂O
- B) aqueous Fel3 (0.24 m)
- C) aqueous KF (0.50 m)
- D) aqueous glucose (0.60 m)
- E) aqueous sucrose (0.60 m)

Answer: C

- 37) A 81.5 g sample of calcium chloride is dissolved in 102 g of water at 45 °C (See the figure above). The solution is cooled to 20.0 °C and no precipitate is observed. This solution is _____.
 - A) hydrated
 - B) placated
 - C) saturated
 - D) unsaturated
 - E) supersaturated

Answer: E

38) Colligative properties of solutions include all of the following except _____

- A) depression of the freezing point of a solution upon addition of a solute to a solvent
- B) the increase of reaction rates with increase in temperature
- C) elevation of the boiling point of a solution upon addition of a solute to a solvent
- D) depression of vapor pressure upon addition of a solute to a solvent

E) an increase in the osmotic pressure of a solution upon the addition of more solute

Answer: B

39) What is the molarity of a 7.00% by mass ammonium chloride aqueous solution at 20 °C? Density of the solution is 1.0198 g/mL.

A) 1.41	B) 0.146	C) 6.86	D) 1.33	E) 0.133
Answer: D				

40) Under constant conditions, the half-life of a first-order reaction _____.

- A) does not depend on the initial reactant concentration
- B) can be calculated from the reaction rate constant

C) is constant

- D) is the time necessary for the reactant concentration to drop to half its original value
- E) All of the above are correct.

Answer: E

41) Which one of the following is not a valid expression for the rate of the reaction below?

A) $\frac{1}{4} \frac{\Delta[NO_2]}{\Delta t}$ B) $\frac{1}{6} \frac{\Delta[H_2O]}{\Delta t}$ C) $-\frac{1}{4} \frac{\Delta[NH_3]}{\Delta t}$ D) $-\frac{1}{7} \frac{\Delta[O_2]}{\Delta t}$

E) All of the above are valid expressions of the reaction rate.

Answer: E

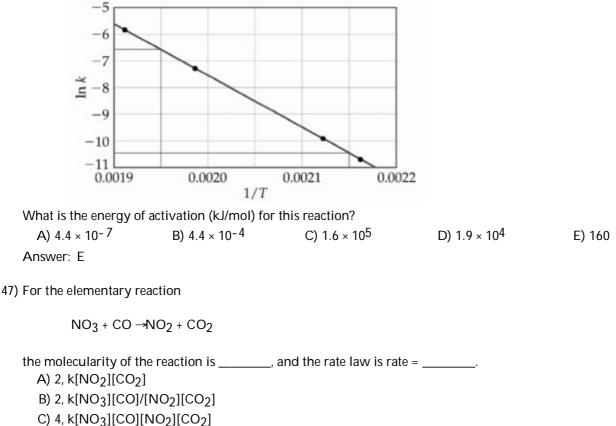
The data in the table below were obtained for the reaction:

A + B →C

Experiment			Initial Rate			
Number	[A] (M)	[B] (M)	(M/s)			
1	0.451	0.885	1.13			
2	0.451	1.77	1.13			
3	1.35	0.885	10.17			
42) (See the tal	ole above) The rate	e law for this	reaction is rate =		
A) k[P]		B)	k[A] ²	C) k[A] ² [B] ²	D) k[A][B]	E) k[A] ² [B]
Answer: B						
43) The rate co	onstant of	a first-o	rder process t	that has a half-life of 3.50 m	in is	s-1.
A) 0.198		B)	1.65 × 10-2	C) 3.30 ×10 ⁻³	D) 1.98	E) 0.693
Answer: C	;					
B) collis C) collis D) all of	ion energ ion orien ion frequ the abov of the ab	ly tation ency e	ls on			

45) In the Arrhenius equation,

$$k = Ae^{-Ea/RT}$$


$$\underline{\qquad} is the frequency factor.$$

$$A) E_{a} B) A C) k D) e E) R$$
Answer: B

46) The decomposition of [A] in solution at 80 °C proceeds via the following reaction:

A (aq) →B (aq)

The dependence of the rate constant on temperature is studied and the graph below is prepared from the results.

D) 2, k[NO₃][CO]

E) 4, k[NO₂][CO₂]/[NO₃][CO]

Answer: D

is

Step 1) NO (g) + Br₂ (g) $\stackrel{k_1}{\underset{k=1}{\leftarrow}}$ NOBr₂ (g) (fast) Step 2) NOBr₂ (g) + NO (g) $\stackrel{k_2}{\underset{k=1}{\leftarrow}}$ 2NOBr (slow)

What is the rate determining step for this reaction?

A) step 1
B) step 2
C) reverse of step 2
D) reverse of step 1
E) both steps 1 and 2

Answer: B

49) A catalyst can ______ the rate of a reaction by providing an alternative pathway with a ______ activation energy

A) increase, lower
B) decrease, constant
C) increase, higher
D) decrease, lower
E) decrease, higher

Answer: A

50) The rate of disappearance of HBr in the gas phase reaction

 $2HBr (g) \rightarrow H_2 (g) + Br_2 (g)$

is 0.190 M s⁻¹ at 150 °C. The rate of appearance of Br₂ is _____ M s⁻¹. A) 0.095 B) 0.0361 C) 2.63 D) 0.380 E) 0.436 Answer: A