112-2 semester General Chemistry Midterm Exam (A) -20240417

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) When argon is placed in a container of neon, the argon spontaneously disperses throughout the neon because

A) of the large attractive forces between argon and neon atoms

B) of solvent-solute interactions

C) the dispersion of argon atoms produces an increase in disorder

D) of hydrogen bonding

E) a decrease in energy occurs when the two mix

Answer: C

2) In a saturated solution of a salt in water, _____.

A) the rate of crystallization > the rate of dissolution

B) addition of more water causes massive crystallization

- C) the rate of crystallization = the rate of dissolution
- D) the rate of dissolution > the rate of crystallization

E) seed crystal addition may cause massive crystallization

Answer: C

3) The solubility of nitrogen gas at 25 °C and 101.325 kPa is 6.8×10^{-4} mol/L. If the partial pressure of nitrogen gas in air is 77.01 kPa, what is the concentration (molarity) of dissolved nitrogen?

A) 6.8 × 10⁻⁴ M B) 5.2 × 10⁻⁴ M C) 3.8 × 10⁻⁴ M D) 1.1 × 10⁻⁵ M E) 4.9 × 10⁻⁴ M

Answer: B

4) Which of the following statements is false?

- A) Nonpolar liquids tend to be insoluble in polar liquids.
- B) The solubility of gases in water decreases with increasing temperature.
- C) The solubility of a gas increases in direct proportion to its partial pressure above the solution.
- D) The weaker the attraction between the solute and solvent molecules, the greater the solubility.
- E) Substances with similar intermolecular attractive forces tend to be soluble in one another.

Answer: D

5) Which one of the following concentration units varies with temperature?

- A) molality
- B) molarity
- C) mass percent
- D) mole fraction
- E) all of the above

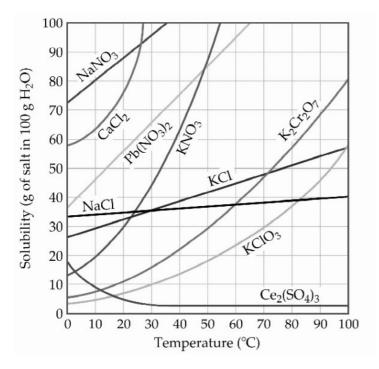
Answer: B

6) The magnitudes of K_f and of K_b depend on the identity of the ______.

- A) solution
- B) solute
- C) solute and solvent
- D) solvent
- E) solvent and on temperature

Answer: D

7) Which of the following liquids will have the lowest freezing point?


- A) pure H₂O
- B) aqueous Fel3 (0.24 m)
- C) aqueous KF (0.50 m)
- D) aqueous glucose (0.60 m)
- E) aqueous sucrose (0.60 m)

Answer: C

8) Colligative properties of solutions include all of the following except _

- A) depression of the freezing point of a solution upon addition of a solute to a solvent
- B) the increase of reaction rates with increase in temperature
- C) elevation of the boiling point of a solution upon addition of a solute to a solvent
- D) depression of vapor pressure upon addition of a solute to a solvent
- E) an increase in the osmotic pressure of a solution upon the addition of more solute

Answer: B

- 9) A 81.5 g sample of calcium chloride is dissolved in 102 g of water at 45 °C (See the figure above). The solution is cooled to 20.0 °C and no precipitate is observed. This solution is _____.
 - A) hydrated
 - B) placated
 - C) saturated
 - D) unsaturated
 - E) supersaturated

Answer: E

10) What is the molarity of a 7.00% by mass ammonium chloride aqueous solution at 20 °C? Density of the solution is 1.0198 g/mL.

A) 1.41	B) 0.146	C) 6.86	D) 1.33	E) 0.133
Answer: D				

11) Under constant conditions, the half-life of a first-order reaction _____.

- A) does not depend on the initial reactant concentration
- B) can be calculated from the reaction rate constant

C) is constant

- D) is the time necessary for the reactant concentration to drop to half its original value
- E) All of the above are correct.

Answer: E

12) Which one of the following is not a valid expression for the rate of the reaction below?

A) $\frac{1}{4} \frac{\Delta[NO_2]}{\Delta t}$ B) $\frac{1}{6} \frac{\Delta[H_2O]}{\Delta t}$ C) $-\frac{1}{4} \frac{\Delta[NH_3]}{\Delta t}$ D) $-\frac{1}{7} \frac{\Delta[O_2]}{\Delta t}$

E) All of the above are valid expressions of the reaction rate.

Answer: E

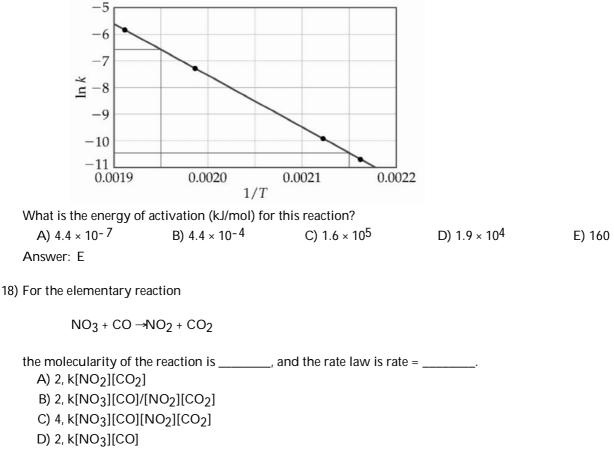
The data in the table below were obtained for the reaction:

A + B →C

	Experiment	:		Initial Rate				
	Number	[A] (M)	[B] (M)	(M/s)				
-	1	0.451	0.885	1.13				
	2	0.451	1.77	1.13				
	3	1.35	0.885	10.17				
13) (See the ta	ble above	-		reaction is rate =			
	A) k[P]		B)	k[A] ²	C) k[A] ² [B] ²	D) k[A][B]		E) k[A] ² [B]
	Answer: B	3						
14) The rate co	onstant of	a first-o	rder process t	hat has a half-life of 3.50 min	n is	s-1.	
	A) 0.198	}	B)	1.65 × 10-2	C) 3.30 ×10 ⁻³	D) 1.98		E) 0.693
	Answer: C	2						
15	-		•	ls on	·			
		ion energ						
		sion orien						
	-	sion frequ						
		the abov						
	E) none	of the ab	ove					
	Answer: D)						

16) In the Arrhenius equation,

$$k = Ae^{-Ea/RT}$$


$$\underline{\qquad} is the frequency factor.$$

$$A) E_a B) A C) k D) e E) R$$
Answer: B

17) The decomposition of [A] in solution at 80 °C proceeds via the following reaction:

A (aq) →B (aq)

The dependence of the rate constant on temperature is studied and the graph below is prepared from the results.

E) 4, k[NO₂][CO₂]/[NO₃][CO]

Answer: D

is

Step 1) NO (g) + Br₂ (g) $\stackrel{k_1}{\underset{k=1}{\longrightarrow}}$ NOBr₂ (g) (fast) Step 2) NOBr₂ (g) + NO (g) $\stackrel{k_2}{\underset{k=1}{\longrightarrow}}$ 2NOBr (slow)

What is the rate determining step for this reaction?

A) step 1B) step 2C) reverse of step 2D) reverse of step 1E) both steps 1 and 2

Answer: B

20) A catalyst can ______ the rate of a reaction by providing an alternative pathway with a ______ activation energy

- A) increase, lowerB) decrease, constant
- C) increase, higher
- D) decrease, lower
- E) decrease, higher

Answer: A

21) The rate of disappearance of HBr in the gas phase reaction

2HBr (g) →H₂ (g) + Br₂ (g)

is 0.190 M s ⁻¹ at 1	50 °C. The rate of appear	ance of Br ₂ is	_ M s ⁻¹ .	
A) 0.095	B) 0.0361	C) 2.63	D) 0.380	E) 0.436
A				

Answer: A

- 22) At equilibrium, _____
 - A) all chemical reactions have ceased
 - B) the rate constants of the forward and reverse reactions are equal
 - C) the rates of the forward and reverse reactions are equal
 - D) the value of the equilibrium constant is 1
 - E) the limiting reagent has been consumed

Answer: C

23) Which one of the following will change the value of an equilibrium constant?

A) changing the volume of the reaction vessel

- B) adding other substances that do not react with any of the species involved in the equilibrium
- C) varying the initial concentrations of products
- D) varying the initial concentrations of reactants
- E) changing temperature

Answer: E

24) The K_{eq} for the equilibrium below is 7.52×10^{-2} at 480.0 °C.

2Cl₂ (g) + 2H₂O (g) = 4HCl (g) + O₂ (g)

What is the value of K_{eq} at this temperature for the following reaction?

2HCI (g) +
$$\frac{1}{2}O_2$$
 (g) \rightleftharpoons CI₂ (g) + H₂O (g)
A) 0.274 B) 3.65 C) 5.66 × 10⁻³ D) 13.3 E) -0.0376
Answer: B

25) Given the following reaction at equilibrium, if $K_c = 1.90 \times 10^{19}$ at 25.0 °C, $K_p =$ _____.

H₂ (g) + Br₂ (g) = 2 HBr (g)

A) 1.90×10^{19} B) 1.56×10^{4} C) 5.26×10^{-20} D) 6.44×10^{5} E) none of the above Answer: A

26) Which of the following expressions is the correct equilibrium-constant expression for the reaction below?

HF (aq) + H₂O (I) \rightleftharpoons H₃O⁺ (aq) + F⁻ (aq)

```
A) [HF][H<sub>2</sub>O] / [H<sub>3</sub>O<sup>+</sup>][F<sup>-</sup>]
B) [F<sup>-</sup>] / [HF]
C) [H<sub>3</sub>O<sup>+</sup>][F<sup>-</sup>] / [HF]
D) 1 / [HF]
E) [H<sub>3</sub>O<sup>+</sup>][F<sup>-</sup>] / [HF][H<sub>2</sub>O]
```

Answer: C

27) Which of the following statements is true?

A) K_{eq} does not change with temperature, whereas Q is temperature dependent.

B) Q is the same as K_{eq} when a reaction is at equilibrium.

C) Q does not depend on the concentrations or partial pressures of reaction components.

D) K does not depend on the concentrations or partial pressures of reaction components.

E) Q does not change with temperature.

Answer: B

28) Which reaction will shift to the left in response to a decrease in volume?

A) $2 \text{ SO}_3(g) \rightleftharpoons 2 \text{ SO}_2(g) + \text{O}_2(g)$ B) $2\text{HI}(g) \rightleftharpoons H_2(g) + I_2(g)$ C) $4 \text{ Fe}(s) + 3 \text{ O}_2(g) \rightleftharpoons 2 \text{ Fe}_2\text{O}_3(s)$ D) $H_2(g) + \text{CI}_2(g) \rightleftharpoons 2 \text{ HCI}(g)$ E) $N_2(g) + 3\text{H}_2(g) \rightleftharpoons 2 \text{ NH}_3(g)$

Answer: A

29) Consider the following reaction at equilibrium:

2NH₃ (g) \rightleftharpoons N₂ (g) + 3H₂ (g)

Le Châtelier's principle predicts that the moles of H₂ in the reaction container will increase with ______

A) a decrease in the total pressure (T constant)

B) a decrease in the total volume of the reaction vessel (T constant)

C) some removal of NH3 from the reaction vessel (V and T constant)

D) an increase in total pressure by the addition of helium gas (V and T constant)

E) addition of some N_2 to the reaction vessel (V and T constant)

Answer: A

30) Consider the following reaction at equilibrium:

 $2CO_2(g) \implies 2CO(g) + O_2(g)$ $\Delta H^\circ = -514 \text{ kJ}$

Le Châtelier's principle predicts that a decrease in temperature will ______.

- A) decrease the partial pressure of O_2 (g)
- B) decrease the partial pressure of CO
- C) decrease the value of the equilibrium constant
- D) increase the value of the equilibrium constant
- E) increase the partial pressure of CO₂ (g)

Answer: D

31) The effect of a catalyst on an equilibrium is to ____

- A) increase the equilibrium constant so that products are favored
- B) slow the reverse reaction only
- C) increase the rate at which equilibrium is achieved without changing the composition of the equilibrium mixture
- D) increase the rate of the forward reaction only
- E) shift the equilibrium to the right

Answer: C

32) Which one of the following is a Brønsted-Lowry acid?

- A) CH₃COOH
- B) HNO₂
- C) HF
- D) (CH₃)₃NH⁺
- E) all of the above

Answer: E

33) Which one of the following statements regarding K_W is <u>false</u>?

A) The value of K_W shows that water is a weak acid.

B) pK_W is 14.00 at 25 °C.

C) The value of K_W is always 1.0×10^{-14} .

- D) K_W changes with temperature.
- E) K_W is known as the ion product of water.

Answer: C

34) The hydride ion, H⁻, is a stronger base than the hydroxide ion, OH⁻. The product(s) of the reaction of hydride ion with water is/are ______.

A) H_2O_2 (aq) B) OH^- (aq) + H_2 (g) C) H_3O^+ (aq) D) no reaction occurs E) OH^- (aq) + $2H^+$ (aq)

Answer: B

35) The K_a of hypochlorous acid (HCIO) is 3.0×10^{-8} at 25.0 °C. What is the percent ionization of hypochlorous acid in a 0.015 M aqueous solution of HCIO at 25.0 °C?

A) 4.5×10^{-8} B) 14 C) 1.4×10^{-3} D) 2.1×10^{-5} E) 0.14 Answer: E

36) HA is a weak acid. Which equilibrium corresponds to the equilibrium constant Kb for A-?

A) HA (aq) + OH⁻ (aq) \rightleftharpoons H₂O (I) + H⁺ (aq) B) HA (aq) + H₂O (I) \rightleftharpoons H₂A⁺ (aq) + OH⁻ (aq) C) A⁻ (aq) + OH⁻ (aq) \rightleftharpoons HOA²⁻ (aq) D) A⁻ (aq) + H₂O (I) \rightleftharpoons HA (aq) + OH⁻ (aq) E) A⁻ (aq) + H₃O⁺ (aq) \rightleftharpoons HA (aq) + H₂O (I)

Answer: D

37) Using the data in the table, which of the conjugate acids below is the strongest acid?

Base	Кb			
CIO-	3.3 × 10-7			
CO3-2	1.8 × 10-4			
HS-	1.8 × 10-7			
NH ₂ CH ₃	4.4 × 10-4			
A) HCIO B) H ₂ S				
C) NH3CH3+	-			
D) HCO3-				
E) H ₂ S and HCIO				
Answer: B				

38) An aqueous solution of a particular compound has $pH = 7.46$. The compound is					
A) a strong acid	B) a salt	C) a strong base	D) a weak acid	E) a weak base	
Answer: E					
39) Of the compounds be A) NaClO, K _a of H	$CIO = 3.2 \times 10^{-8}$	olution of will	have the <u>highest</u> pH.		
B) NH4NO3, K _b of	∑NH3 = 1.8 × 10 ⁻⁵				
C) KCN, K _a of HC	N = 4.0 × 10-10				
D) NaHS, K _b of HS	$5^{-} = 1.8 \times 10^{-7}$				
E) NaOAc, K _a of H	10Ac = 1.8 × 10 ⁻⁵				
Answer: C					
40) Of the following, whi	ch is the strongest acid?				
A) HCIO ₃	B) HCIO ₄	C) HCIO ₂	D) HCIO	E) HIO	
Answer: B					
41) In the gas phase reaction below, NH ₃ is acting as a(n)					
нн + H ⁺	→ H ^H H				

A) Lewis base
B) Lewis acid
C) Brønsted-Lowry base
D) Arrhenius acid

E) Brønsted-Lowry acid

Answer: A

42) Which one of the following pairs cannot be mixed together to form a buffer solution?

A) NaCI, HCI
B) RbOH, HF
C) H₂SO₃, KHSO₃
D) KOH, HNO₂
E) HONH₂, HONH₃CI

Answer: A

- 43) What change will be caused by addition of a small amount of HCl to a solution containing fluoride ions and hydrogen fluoride?
 - A) The concentration of hydrogen fluoride will decrease and the concentration of fluoride ions will increase.
 - B) The concentration of fluoride ion will decrease and the concentration of hydrogen fluoride will increase.
 - C) The concentration of fluoride ions will increase as will the concentration of hydronium ions.
 - D) The concentration of hydronium ions will increase significantly.
 - E) The fluoride ions will precipitate out of solution as its acid salt.

Answer: B

44) In a solution, when the concentrations of a weak acid and its conjugate base are equal, ______

A) the buffering capacity is significantly decreased

B) the system is not at equilibrium

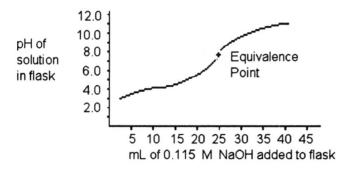
C) the -log of the [H+] and the -log of the K_a are equal

D) All of the above are true.

Answer: C

45) Which solution has the greatest buffering capacity?

A) 0.085 M NH₃ and 0.090 M NH₄Cl


B) 0.540 M NH₃ and 0.550 M NH₄Cl

C) 0.200 M NH₃ and 0.565 M NH₄Cl

D) 0.335 M NH₃ and 0.100 M NH₄Cl

E) They are all buffer solutions and would all have the same capacity.

Answer: B

46) A 50.0 mL sample of a solution of a monoprotic acid is titrated with a 0.115 M NaOH solution. The titration curve above was obtained. The concentration of the monoprotic acid is about _____ mol/L.
A) 0.120 B) 0.0600 C) 0.240 D) 25.0 E) 0.100
Answer: B

Consider the following table of K_{SP} values.

Name	Formula	К _{sp}
Cadmium carbonate	CdCO ₃	5.2 × 10-12
Cadmium hydroxide	Cd(OH) ₂	2.5 × 10 ⁻¹⁴
Calcium fluoride	CaF ₂	3.9 × 10-11
Silver iodide	Agl	8.3 × 10-17
Zinc carbonate	ZnCO3	1.4 × 10-11

47) Which compound listed below has the greatest molar solubility in water?

A) Cd(OH) ₂	B) ZnCO3	C) CaF ₂	D) Agl	E) CdCO3
Answer: C				

48) In which one of the following solutions is silver chloride the most soluble?

A) 0.200 M HCI B) 0.0150 M NH₃ C) pure H₂O D) 0.750 M LiNO₃ E) 0.185 M KCI

Answer: B

49) A result of the common-ion effect is _____

- A) that ions such as K⁺ and Na⁺ are common ions, so that their values in equilibrium constant expressions are always 1.00
- B) that some ions, such as Na⁺ (aq), frequently appear in solutions but do not participate in solubility equilibria
- C) that common ions precipitate all counter-ions
- D) that common ions, such as Na⁺ (aq), don't affect equilibrium constants
- E) that the selective precipitation of a metal ion, such as Ag⁺, is promoted by the addition of an appropriate counterion (X⁻) that produces a compound (AgX) with a very low solubility

Answer: E

50) Calculate the pH of a solution that is 0.278 M in sodium formate (NaHCO₂) and 0.222 M in formic acid

(HCO₂H). The K_a of formic acid is 1.77×10^{-4} .

A) 10.16	B) 4.954	C) 3.647	D) 3.843	E) 13.90
Answer: D				