1101-2nd Midterm Exam_12/15/21_(A)

1)	A 5-ounce cup of raspberry yogurt contains 6.0 g of protein, 2.0 g of fat, and 20.2 g of carbohydrate. The fuel values for protein, fat, and carbohydrate are 17, 38, and 17 kJ/g, respectively. The fuel value of this cup of yogurt is kJ.						
	A) 72	B) 630	C) 520	D) 340	E) 720		
	Answer: C						
2)	A sample of aluminum metal absorbs 8.32J of heat, upon which the temperature of the sample increases from $23.2 ^{\circ}\text{C}$ to $30.5 ^{\circ}\text{C}$. Since the specific heat capacity of aluminum is 0.90J/g-K , the mass of the sample is g.						
	A) 72	B) 1.3	C) 7.5	D) 7.3	E) 65		
	Answer: B						
3)	A) positive, endB) zero, endothC) negative, endD) zero, exotherE) positive, exo	ermic dothermic mic	process.				
	Answer: A						
4)	 4) The internal energy of a system A) refers only to the energies of the nuclei of the atoms of the component molecules B) is the sum of the kinetic energy of all of its components C) is the sum of the rotational, vibrational, and translational energies of all of its components D) is the sum of the potential and kinetic energies of the components E) none of the above 						
	Answer: D						
5)	A) H ₂ (g) + 1/2 B) 2 C (s, graph C) H ₂ (g) + O ₂	$O_2 (g) \rightarrow H_2O (I)$ ite) + 2 H ₂ (g) $\rightarrow C_2H_2 (g) \rightarrow H_2O_2 (I)$ $O_2 (g) \rightarrow NO_2 (g)$		equal to ΔH°_{f} for the p	roduct?		
6)	For the species in t	the reaction below, Δ H	I _f ° is zero for				
	2Co (s) +	$H_2(g) + 8PF_3(g) \rightarrow$	2HCo(PF ₃) ₄ (I)				
	A) H ₂ (g) B) PF ₃ (g) C) Co (s) D) HCo(PF ₃) ₄ (i E) both Co(s) ar						

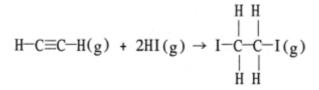
A) gives off heat and c B) absorbs heat and d C) gives off heat and h	does work oes work nas work done on it	ative.		
D) absorbs heat and haE) none of the above is				
Answer: A				
The specific heat capacity temperature of a 1.55-kg	·	_	= =	e needed to raise the
A) 1.79 × 10 ⁵ Answer: D	B) 5.58 × 10 ⁻⁶	C) 26.6	D) 2.66 × 10 ⁴	E) 0.00558
9) The specific heat capacity			ny joules of heat are neede	d to raise the
temperature of 5.00 g of i A) 429 Answer: A	B) 22.9	C) 0.0113	D) 1221	E) 88.6
10) Which one of the followingA) 4s	ng is an incorrect orb B) 3p _y	ital notation? C) 3f	D) 2s	E) 4d _X y
Answer: C				
11) Which electron configura A)	ition represents a vio	lation of the Pauli	exclusion principle?	
1s 2s	2p			
T ↓ T ↓	T	<u>1</u>		
1s 2s	2p			
\uparrow \uparrow				
C) 1s 2s	20			
	2p			
D)	1 4			
1s 2s	2p			
$\uparrow\uparrow$				
E)	•			
$ \begin{array}{c c} 1s & 2s \\ \uparrow & \uparrow \end{array} $	2p	\uparrow		
Answer: D				

12) Which one of the A) [He]2s ² 2p ⁴ B) 1s ² 2s ² 2p ² C) 1s ² 2s ² 2p ¹ D) 1s ² 2s ² 2p ⁴ E) 1s ² 2s ² 2p ⁴ Answer: D	1	configurations de	picts an excited oxyg	en atom?	
13) Flactromagnetic	radiation w	ith a wavelength	of 531 nm annears as	s green light to the hum	an eye. The energy of
one photon of th	is light is 3.	74 × 10 ⁻¹⁹ J. Thus	s, a laser that emits 1.3	3×10^{-2} J of energy in a	
wavelength prod A) 9.2×10^{-24}		photons in 3.5 × 10 ¹⁶		D) 6.5 × 10 ¹³	E) 1.8 × 10 ¹⁹
Answer: B	Б,	3.3 × 10	C) 2.7 ^ 10	D) 0.3 × 10 ·	L) 1.0 × 10
	0 _{5p} 5	is the correct elect	tron configuration for	a ground-state nitroge	en atom?
A) 1s	2s	2p			
	$\uparrow\uparrow$	1	\uparrow		
1s	2s	2p	\uparrow		
1s	2s	2p	\uparrow		
D) 1s	2s	2p			

E) None of the above is correct.

Answer: C

(i) Elements (ii) Elements positive e (iii) Elements	with this electron con with this electron con lectron affinities. with this electron con with this electron con re true? v)	nfiguration of ns ² np ⁵ ar figuration are expected figuration are expected figuration are nonmetal figuration form acidic o	to form -1 anions. to have large ls.	nents:
Answer: A				
A) chlorine is mo B) chlorine has a C) chlorine has a	re metallic than sodic greater electron affin greater ionization en as and sodium is a so	ity than sodium does ergy than sodium does	m. This is because	·
Allswell D				
	des mic molecules	a given period		
A) CI	llowing elements has B) N	an allotrope that is prod C) O	duced in the upper atm D) S	nosphere by lightning? E) He
Answer: C				
20) Which of the follow A) Rb ⁺¹ Answer: E	ring does <u>not</u> have eig B) Ti ⁺⁴	ht valence electrons? C) Xe	D) CI-	E) Sr+1
21) Of the following	cannot acco	ammadata mara than ar	a actat of alactrons	
A) V Answer: D	B) Ni	ommodate more than ar C) As	D) C	E) Y
22) There are	valence electrons in	n the Lewis structure of	CH ₃ CH ₂ CI.	
A) 20 Answer: A	B) 14	C) 10	D) 12	E) 18


- 23) Why don't we draw double bonds between the Be atom and the CI atoms in BeCI₂?
 - A) That would result in the formal charges not adding up to zero.
 - B) There aren't enough electrons.
 - C) That would result in more than eight electrons around beryllium.
 - D) That would result in more than eight electrons around each chlorine atom.
 - E) That would give positive formal charges to the chlorine atoms and a negative formal charge to the beryllium atom.

Answer: E

- 24) In the nitrite ion (NO₂-), _____.
 - A) both bonds are single bonds
 - B) one bond is a double bond and the other is a single bond
 - C) there are 20 valence electrons
 - D) both bonds are double bonds
 - E) both bonds are the same

Answer: E

25) Using the table of average bond energies below, the ΔH for the reaction is _____ kJ.

Bond: C≡C C-C H-I C-I C-H D (kJ/mol): 839 348 299 240 413

A) -63 B) +63 C) +160 D) -160

E) -217

Answer: E