Exam

Name\_\_\_\_\_

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) In the electrochemical cell using the redox reaction below, the cathode half-reaction is \_\_\_\_\_\_.

$$2H^+$$
 (s) + Sn (s)  $\rightarrow$  Sn<sup>2+</sup> (aq) + H<sub>2</sub> (g)

A) Sn + 2e<sup>-</sup>  $\rightarrow$ H<sub>2</sub> B) Sn + 2e<sup>-</sup>  $\rightarrow$  Sn<sup>2+</sup> C) 2H<sup>+</sup> + 2e<sup>-</sup>  $\rightarrow$ H<sub>2</sub> D) Sn  $\rightarrow$  Sn<sup>2+</sup> + 2e<sup>-</sup> E) 2H<sup>+</sup>  $\rightarrow$ H<sub>2</sub> + 2e<sup>-</sup>

Answer: C

2) How many kilowatt-hours of electricity are used to produce 4.50 kg of magnesium in the electrolysis of molten MgCl<sub>2</sub> with an applied emf of 5.00 V?

A) 49.6 B) 24.8 C) 0.0496 D) 12.4 E) 0.0201 Answer: A

3) What is the coefficient of the dichromate ion when the following equation is balanced?

 $Fe^{2+} + Cr_2O_7^{2-} \rightarrow Fe^{3+} + Cr^{3+}$  (acidic solution) A) 6 B) 3 C) 5 D) 2 E) 1 Answer: E

4) Which one of the following types of elements is most likely to be a good oxidizing agent?

- A) alkaline earth elements
- B) halogens
- C) lanthanides
- D) alkali metals
- E) transition elements

Answer: B

5) Cathodic protection of a metal pipe against corrosion usually entails \_\_\_\_\_

- A) attaching a dry cell to reduce any metal ions which might be formed
- B) coating the pipe with a fluoropolymer to act as a source of fluoride ion (since the latter is so hard to oxidize)
- C) attaching an active metal to make the pipe the anode in an electrochemical cell
- D) coating the pipe with another metal whose standard reduction potential is less negative than that of the pipe
- E) attaching an active metal to make the pipe the cathode in an electrochemical cell

Answer: E

6) The product of the nuclear reaction in which 40Ar is subjected to neutron capture followed by alpha emission is \_\_\_\_\_.

A) 37S B) 45Ca C) 36S D) 35Ar E) 41Ar Answer: A 7) The half-life of cobalt-60 is 5.20 yr. How many milligrams of a 2.000-mg sample remain after 9.50 years?

A) 7.03 × 10<sup>-22</sup> B) 7.076 C) 1.435 D) 1.095 E) 0.565

- \_\_\_\_\_\_\_\_
- Answer: E
- 8) If we start with 1.000 g of strontium-90, 0.805 g will remain after 9.00 yr. This means that the half-life of strontium-90 is \_\_\_\_\_ yr.
  - A) 28.8 B) 7.25 C) 11.2 D) 7.74 E) 41.6 Answer: A

9) In balancing the nuclear reaction  $\frac{14}{6}C \rightarrow E + \frac{0}{-1}e$ , the identity of element E is \_\_\_\_\_.

- A) C
- B) B
- C) O
- D) N

E) none of the above

Answer: D

- 10) The half-life of a radionuclide \_\_\_\_
  - A) gets shorter with passing time
  - B) gets longer with increased temperature
  - C) is constant
  - D) gets longer with passing time
  - E) gets shorter with increased temperature
  - Answer: C

11) What radioactive element is used to diagnose medical conditions of the heart and arteries?

- A) thallium-201
- B) radium-226
- C) thorium-234
- D) radon-222
- E) cobalt-60
- Answer: A

12) Which ion shown below does not exist?

| A) Y <sup>4+</sup>     | B) Zr <sup>4+</sup> | C) Y+                 | D) Y <sup>2+</sup>        | E) Nb <sup>3+</sup> |
|------------------------|---------------------|-----------------------|---------------------------|---------------------|
| Answer: A              |                     |                       |                           |                     |
| 13) The ligand with th | ne name aqua when u | sed in complexes with | h transition metals has t | he formula          |

A) H<sub>2</sub>O<sub>2</sub> B) H<sub>3</sub>O<sup>+</sup> C) N<sub>3</sub><sup>-</sup> D) HO<sup>-</sup> E) H<sub>2</sub>O Answer: E

14) How many d electrons are associated with the metal ion in [Cr(NH3)6]3+?A) 3B) 2C) 0D) 4

Answer: A

15) What two oxidation states are more frequently observed in the first transition series than in the third? A) +5 and +6 B) +3 and +7 C) +3 and +5 D) +2 and +3 E) +2 and +7 Answer: D

E) 1

16) What are the respective central-metal oxidation state, coordination number, and overall charge on the complex ion in

| Na <sub>2</sub> [Cr(N                                                                                                                                                                                                                                                                                                       | H <sub>3</sub> ) <sub>2</sub> (NCS) <sub>4</sub> ]?                                  |                                                  |                                  |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|----------------------|
| A) +2; 4; -1<br>Answer: E                                                                                                                                                                                                                                                                                                   | B) +1; 6; -2                                                                         | C) +3; 6; +1                                     | D) +3; 6; -1                     | E) +2; 6; -2         |
| 17) Which one of the f<br>A) [Fe(H <sub>2</sub> O) <sub>6</sub> ] <sup>2</sup><br>B) [Zn(NH <sub>3</sub> ) <sub>4</sub> ] <sup>2</sup><br>C) [Zn(H <sub>2</sub> O) <sub>4</sub> ] <sup>2</sup><br>D) [Fe(H <sub>2</sub> O) <sub>6</sub> ] <sup>3</sup><br>E) [Co(H <sub>2</sub> O) <sub>6</sub> ] <sup>3</sup><br>Answer: D | ollowing complex ions<br>+ (low spin)<br>+<br>+<br>+<br>+ (low spin)<br>+ (low spin) | will be paramagnetic?                            |                                  |                      |
| <ul><li>18) A complex that ab</li><li>A) green</li><li>Answer: A</li></ul>                                                                                                                                                                                                                                                  | sorbs light at 700 nm w<br>B) violet                                                 | ill appear<br>C) orange                          | D) yellow                        | E) red               |
| 19) Which one of the f<br>A) C <sub>10</sub> H <sub>22</sub><br>Answer: E                                                                                                                                                                                                                                                   | ollowing could be a cyc<br>B) C3H5                                                   | clic alkane?<br>C) C <sub>2</sub> H <sub>6</sub> | D) C <sub>6</sub> H <sub>5</sub> | E) C5H <sub>10</sub> |
| 20) How many chiral o<br>A) 3<br>Answer: C                                                                                                                                                                                                                                                                                  | centers are there in CH<br>B) 4                                                      | 3CHCHCH2CHBr2?<br>C) 0                           | D) 2                             | E) 1                 |

21) How many structural isomers (include all types except optical) can be drawn for C<sub>5</sub>H<sub>10</sub>? A) 7 B) 10 C) 12 D) 6 E) 5 Answer: B

22) What is the name of the compound below?



A) 2,4-methylbutene
B) 2,4-dimethyl-4-pentene
C) 2,4-dimethyl-1-pentene
D) 2,5-dimethylpentane
E) 2,4-ethylbutene

Answer: C

23) The general formula of a carboxylic acid is \_\_\_\_\_.





- 24) The hybridization of the central carbon atom in an aldehyde is \_\_\_\_\_. A) sp<sup>3</sup> B) sp<sup>2</sup> C) d<sup>2</sup>sp<sup>3</sup> D) sp<sup>4</sup> E) sp Answer: B
- 25) Given the following reduction half-reactions:

 $Fe^{3+}(aq) + e^{-} + Fe^{2+}(aq) E^{\circ} red = +0.77 V$   $S_2O_6^{2-}(aq) + 4 H^{+}(aq) + 2 e^{-} \rightarrow 2 H_2SO_3(aq) E^{\circ} red = +0.60 V$ Calculate G° and equilibrium constant K for the oxidation of Fe<sup>2+</sup>(aq) by S<sub>2</sub>O<sub>6</sub><sup>2-</sup>(aq) 298 K, respectively.

A) 33000 KJ; 1.78 × 10<sup>-12</sup>
B) 33 KJ; 1.78 × 10<sup>-6</sup>
C) 63 KJ; 3.42 × 10<sup>-7</sup>
D) 33 J; 2.78 × 10<sup>3</sup>
E) 330 KJ; 2.78 × 10<sup>2</sup>
Answer: B