1102-1st Midterm Exam_03/30/22_(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

The data in the table below were obtained for the reaction:
$2 \mathrm{ClO}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)$

Experiment Number	$\left[\mathrm{ClO}_{2}\right](\mathrm{M})$	$\left[\mathrm{OH}^{-}\right](\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.060	0.030	0.0248
2	0.020	0.030	0.00276
3	0.020	0.090	0.00828

1) What is the order of the reaction with respect to ClO_{2} ?
A) 4
B) 1
C) 3
D) 2
E) 0

Answer: D
2) A reaction was found to be third order in A. Increasing the concentration of A by a factor of 3 will cause the reaction rate to \qquad _.
A) remain constant
B) triple
C) increase by a factor of 9
D) increase by a factor of 27
E) decrease by a factor of the cube root of 3

Answer: D

The peroxydisulfate ion $\left(\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right)$ reacts with the iodide ion in aqueous solution via the reaction:

$$
\mathrm{S}_{2} \mathrm{O}_{8}^{2-}(\mathrm{aq})+3 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{I}_{3}^{-}(\mathrm{aq})
$$

An aqueous solution containing 0.050 M of $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ ion and 0.072 M of I^{-}is prepared, and the progress of the reaction followed by measuring $\left[\mathrm{I}^{-}\right]$. The data obtained is given in the table below.

Time (s)	0.000	400.0	800.0	1200.0	1600.0
$\left[\mathrm{I}^{-}\right](\mathrm{M})$	0.072	0.057	0.046	0.037	0.029

3) The average rate of disappearance of I^{-}between 400.0 s and 800.0 s is \qquad M/s.
A) 3.6×10^{4}
B) 1.4×10^{-5}
C) 2.6×10^{-4}
D) 2.8×10^{-5}
E) 5.8×10^{-5}

Answer: D
4) For the elementary reaction

$$
\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}
$$

the molecularity of the reaction is \qquad and the rate law is rate $=$ \qquad .
A) $4, \mathrm{k}\left[\mathrm{NO}_{3}\right][\mathrm{CO}]\left[\mathrm{NO}_{2}\right]\left[\mathrm{CO}_{2}\right]$
B) $4, \mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{CO}_{2}\right] /\left[\mathrm{NO}_{3}\right][\mathrm{CO}]$
C) $2, \mathrm{k}\left[\mathrm{NO}_{3}\right][\mathrm{CO}] /\left[\mathrm{NO}_{2}\right]\left[\mathrm{CO}_{2}\right]$
D) $2, \mathrm{k}\left[\mathrm{NO}_{3}\right][\mathrm{CO}]$
E) $2, \mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{CO}_{2}\right]$

Answer: D
5) A second- order reaction has a half- life of 18 s when the initial concentration of reactant is 0.71 M . The rate constant for this reaction is \qquad $\mathrm{M}^{-1} \mathrm{~S}^{-1}$.
A) 18
B) 1.3
C) 2.0×10^{-2}
D) 3.8×10^{-2}
E) 7.8×10^{-2}

Answer: E
6) The half- life of a first- order reaction is 13 min . If the initial concentration of reactant is 0.085 M , it takes
\qquad \min for it to decrease to 0.055 M .
A) 3.6
B) 8.2
C) 8.4
D) 11
E) 0.048

Answer: B
7) A particular first- order reaction has a rate constant of $1.35 \times 10^{2} \mathrm{~s}^{-1}$ at $25.0^{\circ} \mathrm{C}$. What is the magnitude of k at $75.0^{\circ} \mathrm{C}$ if $\mathrm{E}_{\mathrm{a}}=60.2 \mathrm{~kJ} / \mathrm{mol} ? \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
A) 2.71×10^{6}
B) 471
C) 2.44×10^{4}
D) 4.43×10^{3}
E) 1.35×10^{2}

Answer: D
8) Which one of the following substances would be the most soluble in CCl_{4} ?
A) $\mathrm{C}_{10} \mathrm{H}_{22}$
B) NaCl
C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
D) $\mathrm{H}_{2} \mathrm{O}$
E) NH_{3}

Answer: A
9) A solution is prepared by dissolving 13.0 g of NH_{3} in 250.0 g of water. The density of the resulting solution is $0.974 \mathrm{~g} / \mathrm{mL}$. The mole fraction of NH_{3} in the solution is \qquad —.
A) 0.0520
B) 0.940
C) 0.922
D) 0.0522
E) 16.8

Answer: D
10) Which of the following liquids will have the lowest freezing point?
A) pure $\mathrm{H}_{2} \mathrm{O}$
B) aqueous $\mathrm{FeI}_{3}(0.030 \mathrm{~m})$
C) aqueous glucose (0.050 m)
D) aqueous $\mathrm{NaI}(0.030 \mathrm{~m})$
E) aqueous $\mathrm{CoI}_{2}(0.030 \mathrm{~m})$

Answer: B
11) Calculate the molality of a 25.4% (by mass) aqueous solution of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$.
A) 4.45 m
B) 25.4 m
C) 3.47 m
D) 2.59 m
E) The density of the solution is needed to solve the problem.

Answer: C
12) A solution is prepared by dissolving calcium chloride in water and diluting to 500.0 mL . If this solution contains 44 ppm chloride ions, the concentration of calcium ions is \qquad ppm.
A) 88
B) 11
C) 500
D) 44
E) 22

Answer: E
13) The vapor pressure of pure water at $25^{\circ} \mathrm{C}$ is 23.8 torr. What is the vapor pressure (torr) of water above a solution prepared by dissolving 18.0 g of glucose (a nonelectrolyte, MW $=180.0 \mathrm{~g} / \mathrm{mol}$) in 95.0 g of water?
A) 23.4
B) 23.8
C) 0.451
D) 0.443
E) 24.3

Answer: A
14) A solution is prepared by dissolving 15.0 g of NH_{3} in 250.0 g of water. The density of the resulting solution is $0.974 \mathrm{~g} / \mathrm{mL}$. The molarity of NH_{3} in the solution is \qquad _.
A) 3.24
B) 0.882
C) 60.0
D) 3.53
E) 0.00353

Answer: A
15) Which one of the following solutes has a limiting van't Hoff factor (i) of 3 when dissolved in water?
A) KNO_{3}
B) $\mathrm{CH}_{3} \mathrm{OH}$
C) sucrose
D) CCl_{4}
E) $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Answer: E
16) A solution is prepared by dissolving 0.60 g of nicotine (a nonelectrolyte) in water to make 12 mL of solution. The osmotic pressure of the solution is 7.55 atm at $25^{\circ} \mathrm{C}$. The molecular weight of nicotine is \qquad $\mathrm{g} / \mathrm{mol}$. $\mathrm{R}=0.0821 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mol} \bullet \mathrm{K}$
A) 160
B) 43
C) 50
D) 0.60
E) 28

Answer: A
17) The solubility of Ar in water at $25^{\circ} \mathrm{C}$ is $1.6 \times 10^{-3} \mathrm{M}$ when the pressure of the Ar above the solution is 1.0 atm . The solubility of Ar at a pressure of 2.5 atm is \qquad M.
A) 1.6×10^{3}
B) 4.0×10^{-3}
C) 1.6×10^{-3}
D) 6.4×10^{-4}
E) 7.5×10^{-2}

Answer: B
18) Which of the following expressions is the correct equilibrium- constant expression for the reaction below?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

A) $\left[\mathrm{SO}_{2}\right] /\left[\mathrm{SO}_{3}\right]$
B) $\left[\mathrm{SO}_{3}\right] /\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]$
C) $\left[\mathrm{SO}_{3}\right]^{2} /\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]^{2}$
D) $\left[\mathrm{SO}_{3}\right]^{2} /\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$
E) $\left[\mathrm{SO}_{3}\right] /\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{2}$

Answer: D
19) In which of the following reactions would increasing pressure at constant temperature change the concentrations of reactants and products, based on Le Châteliers principle?
A) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
B) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
C) $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$
D) $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
E) all of the above

Answer: E
20) Which of the following expressions is the correct equilibrium- constant expression for the reaction below?

$$
\mathrm{CO}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

A) $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]$
B) $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
C) $\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]$
D) $\left[\mathrm{CO}_{2}\right] /\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]$
E) $\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]$

Answer: A
21) $\mathrm{K}_{\mathrm{p}}=0.0198$ at 721 K for the reaction

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

In a particular experiment, the partial pressures of H_{2} and I_{2} at equilibrium are 0.763 and 0.863 atm , respectively. The partial pressure of HI is \qquad atm.
A) 5.77
B) 0.0130
C) 33.3
D) 0.114
E) 7.87

Answer: A
22) Consider the following equilibrium.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

The equilibrium cannot be established when \qquad is are placed in a $1.0-\mathrm{L}$ container.
A) $0.75 \mathrm{~mol} \mathrm{SO}_{2}(\mathrm{~g})$
B) $1.0 \mathrm{~mol} \mathrm{SO}_{3}(\mathrm{~g})$
C) $0.25 \mathrm{~mol} \mathrm{SO}_{2}(\mathrm{~g})$ and $0.25 \mathrm{~mol} \mathrm{O}_{2}(\mathrm{~g})$
D) $0.50 \mathrm{~mol} \mathrm{O}_{2}(\mathrm{~g})$ and $0.50 \mathrm{~mol} \mathrm{SO}_{3}(\mathrm{~g})$
E) 0.25 mol of $\mathrm{SO}_{2}(\mathrm{~g})$ and 0.25 mol of $\mathrm{SO}_{3}(\mathrm{~g})$

Answer: A
23) Consider the following chemical reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

At equilibrium in a particular experiment, the concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI were $0.15 \mathrm{M}, 0.033 \mathrm{M}$, and 0.55 M , respectively. The value of K_{eq} for this reaction is \qquad -.
A) 0.0090
B) 5.1
C) 23
D) 111
E) 61

Answer: E
24) The value of $K_{e q}$ for the equilibrium

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

is 794 at $25^{\circ} \mathrm{C}$. What is the value of K_{eq} for the equilibrium below?

$$
1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{HI}(\mathrm{~g})
$$

A) 397
B) 0.0013
C) 0.035
D) 1588
E) 28

Answer: E
25) Given the following reaction at equilibrium, if $\mathrm{K}_{\mathrm{C}}=5.54 \times 10^{5}$ at $230.0^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}=$ $\mathrm{R}=0.0821 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{K}$

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A) 2.28×10^{6}
B) 3.67×10^{-2}
C) 6.44×10^{5}
D) 1.34×10^{4}
E) 2.99×10^{7}

Answer: D

