1102-1st Midterm Exam_03/30/22_(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

The data in the table below were obtained for the reaction:

 $2 \text{ CIO}_2 (\text{aq}) + 2 \text{ OH}^- (\text{aq}) \rightarrow \text{CIO}_3^- (\text{aq}) + \text{CIO}_2^- (\text{aq}) + \text{H}_2\text{O} (1)$ Experiment Initial Rate Number [CIO₂] (M) [OH-] (M) (M/s)1 0.060 0.030 0.0248 2 0.020 0.030 0.00276 3 0.020 0.090 0.00828 1) What is the order of the reaction with respect to CIO₂? B) 1 A) 4 C) 3 D) 2 E) 0 Answer: D

2) A reaction was found to be third order in A. Increasing the concentration of A by a factor of 3 will cause the reaction rate to ______.

A) remain constant

B) triple

- C) increase by a factor of 9
- D) increase by a factor of 27
- E) decrease by a factor of the cube root of 3

Answer: D

The peroxydisulfate ion ($S_2O_8^{2-}$) reacts with the iodide ion in aqueous solution via the reaction:

 $S_2O_8^{2-}$ (aq) + 31⁻ $\rightarrow 2SO_4$ (aq) + 13⁻ (aq)

An aqueous solution containing 0.050 M of $S_2O_8^{2-}$ ion and 0.072 M of I^- is prepared, and the progress of the reaction followed by measuring [I^-]. The data obtained is given in the table below.

	Time (s)	0.000	400.0	800.0	1200.0	1600.0
	[I-] (M)	0.072	0.057	0.046	0.037	0.029
3) The average rate of dis	appearance o	of I- betv	veen 400	.0 s and	800.0 s is	
		-				

A) 3.6×10^4 B) 1.4×10^{-5} C) 2.6×10^{-4} D) 2.8×10^{-5} E) 5.8×10^{-5} Answer: D 4) For the elementary reaction

NO ₃ + CO	→NO ₂ + CO ₂			
the molecularity of t A) 4, k[NO ₃][CO] B) 4, k[NO ₂][CO ₂ C) 2, k[NO ₃][CO] D) 2, k[NO ₃][CO] E) 2, k[NO ₂][CO ₂ Answer: D	the reaction is [[NO ₂][CO ₂] 2]/[NO ₃][CO] [/[NO ₂][CO ₂] [2]	, and the rate law is rat	:e =	
5) A second-order read	ction has a half-life of	f 18 s when the initial conce 1-1c-1	entration of reactant is	0.71 M. The rate
A) 18 Answer [.] F	B) 1.3	C) 2.0 × 10-2	D) 3.8 × 10-2	E) 7.8 × 10-2
6) The half-life of a first	st-order reaction is 13	8 min. If the initial concentr	ation of reactant is 0.0	985 M, it takes
A) 3.6 Answer: B	B) 8.2	C) 8.4	D) 11	E) 0.048
7) A particular first-or 75.0°C if $E_a = 60.2$ k.	der reaction has a rate J/mol? R=8.314 J/mo	e constant of 1.35 × 102 s−1 I∙K	at 25.0 °C. What is the	e magnitude of k at
A) 2.71 × 10 ⁶ Answer: D	B) 471	C) 2.44 × 10 ⁴	D) 4.43 × 10 ³	E) 1.35 × 10 ²
8) Which one of the fol	llowing substances w	ould be the most soluble in	CCI4?	
A) C ₁₀ H ₂₂ Answer: A	B) NaCl	C) CH ₃ CH ₂ OH	D) H ₂ O	E) NH3
9) A solution is prepar 0.974 g/mL. The mol A) 0.0520 Answer: D	ed by dissolving 13.0 le fraction of NH ₃ in B) 0.940	g of NH ₃ in 250.0 g of wate the solution is C) 0.922	er. The density of the r D) 0.0522	resulting solution is E) 16.8
10) Which of the followi A) pure H ₂ O B) aqueous Fel ₃ C) aqueous gluco D) aqueous Nal ((E) aqueous Col ₂	ing liquids will have t (0.030 m) se (0.050 m) 0.030 m) (0.030 m)	he lowest freezing point?		

11) Calculate the molality of a 25.4% (by mass) aqueous solution of phosphoric acid (H₃PO₄).

A) 4.45 m B) 25.4 m C) 3.47 m D) 2.59 m E) The density of	the solution is needed	to solve the problem.		<i>,</i> ,
Answer: C				
12) A solution is prepar contains 44 ppm ch	red by dissolving calciu oride ions, the concent B) 11	um chloride in water an tration of calcium ions i	d diluting to 500.0 mL. s ppm.	If this solution
Answer: E	<i>b)</i> 11	C) 500	D) 44	L) 22
7				
13) The vapor pressure solution prepared b	of pure water at 25 °C y dissolving 18.0 g of g	is 23.8 torr. What is the glucose (a nonelectrolyt	vapor pressure (torr) o e, MW = 180.0 g/mol) ir	f water above a n 95.0 g of water?
A) 23.4	B) 23.8	C) 0.451	D) 0.443	E) 24.3
Answer: A				
14) A solution is prepar	ed by dissolving 15.0 g	g of NH ₃ in 250.0 g of w	vater. The density of the	e resulting solution is
0.974 g/mL. The mo				
A) 3.24	D) 0.002	C) 60.0	D) 3.53	E) 0.00355
Allswell A				
15) Which one of the fo	llowing solutes has a li	miting van't Hoff facto	r (i) of 3 when dissolved	d in water?
A) KNO3	B) CH ₃ OH	C) sucrose	D) CCI4	E) Na ₂ SO ₄
Answer: E				
16) A solution is prepar The osmotic pressu R=0.0821 atm•L/m	red by dissolving 0.60 g re of the solution is 7.5 ol•K	g of nicotine (a nonelect 5 atm at 25 °C. The mol	rolyte) in water to mak ecular weight of nicotir	e 12 mL of solution. ne is g/mol.
A) 160	B) 43	C) 50	D) 0.60	E) 28
Answer: A				
17) The solubility of Ar The solubility of Ar	in water at 25 °C is 1.6 at a pressure of 2.5 at	o × 10 ^{−3} M when the pre m is M.	essure of the Ar above t	he solution is 1.0 atm.
A) 1.6 × 10 ³	B) 4.0 × 10 ⁻³	C) 1.6 × 10-3	D) 6.4 × 10-4	E) 7.5 × 10-2
Answer: B				

18) Which of the following expressions is the correct equilibrium-constant expression for the reaction below?

A) [SO₂] / [SO₃] B) [SO₃] / [SO₂][O₂] C) [SO₃]² / [SO₂]²[O₂]² D) [SO₃]² / [SO₂]²[O₂] E) [SO₃] / [SO₂][O₂]² 19) In which of the following reactions would increasing pressure at constant temperature change the concentrations of reactants and products, based on Le Châteliers principle?

A) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ B) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ C) $2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$ D) $N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g)$ E) all of the above

Answer: E

20) Which of the following expressions is the correct equilibrium-constant expression for the reaction below?

 CO_2 (s) + H₂O (l) = H⁺ (aq) + HCO₃⁻ (aq)

A) [H+][HCO3-]

B) [H⁺][HCO₃⁻] / [CO₂][H₂O]

C) [H+][HCO₃-] / [CO₂]

D) [CO₂] / [H⁺][HCO₃⁻]

```
E) [CO<sub>2</sub>][H<sub>2</sub>O] / [H<sup>+</sup>][HCO<sub>3</sub><sup>-</sup>]
```

Answer: A

21) $K_p = 0.0198$ at 721 K for the reaction

 $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$

In a particular experiment, the partial pressures of H₂ and I₂ at equilibrium are 0.763 and 0.863 atm,

respectively. The partial pressure of HI is ______ atm. A) 5.77 B) 0.0130 C) 33.3 D) 0.114 E) 7.87 Answer: A

22) Consider the following equilibrium.

2 SO₂ (g) + O₂ (g) \rightleftharpoons 2 SO₃ (g)

The equilibrium cannot be established when ______ is/are placed in a 1.0-L container.

A) 0.75 mol SO₂ (g)

B) 1.0 mol SO3 (g)

C) 0.25 mol SO₂ (g) and 0.25 mol O₂ (g)

D) 0.50 mol O_2 (g) and 0.50 mol SO_3 (g)

E) 0.25 mol of SO_2 (g) and 0.25 mol of SO_3 (g)

Answer: A

23) Consider the following chemical reaction:

 $H_{2}(g) + I_{2}(g) \implies 2HI(g)$

At equilibrium in a particular experiment, the concentrations of H₂, I₂, and HI were 0.15 M, 0.033 M, and At equilibrium in a particular of the value of K_{eq} for this reaction is ______.

D) 111 E) 61 Answer: E

24) The value of K_{eq} for the equilibrium

 $H_2(g) + I_2(g) \implies 2 HI(g)$

is 794 at 25 °C. What is the value of K_{eq} for the equilibrium below?

1/2 H₂ (g) + 1/2 I₂ (g) 🛁 HI (g)

A) 397 B) 0.0013 C) 0.035 D) 1588 E) 28 Answer: E

25) Given the following reaction at equilibrium, if $K_c = 5.54 \times 10^5$ at 230.0 °C, $K_p =$ ______. R=0.0821 atm • L/mol • K

 $2NO(g) + O_2(g) \implies 2NO_2(g)$

A) 2.28 x 10 ⁶	B) 3.67 x 10 ⁻²	C) 6.44 x 10 ⁵	D) 1.34 x 10 ⁴	E) 2.99 x 10 ⁷
Answer: D				