1101-1st Midterm Exam_11/03/21_(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Which of the following is an illustration of the law of constant composition?
A) Water is 11% hydrogen and 89% oxygen by mass.
B) Water is a compound.
C) Water can be separated into other substances by a chemical process.
D) Water and salt have different boiling points.
E) Water boils at 372 K at 101.325 kPa pressure.

Answer: A
2) Which of the following are chemical processes?

1. rusting of a nail
2. freezing of water
3. decomposition of water into hydrogen and oxygen gases
4. compression of oxygen gas
A) 1,2
B) $2,3,4$
C) 1,3
D) 1,4
E) 1, 3, 4

Answer: C
3) Accuracy refers to \qquad _.
A) how close a measured number is to other measured numbers
B) how close a measured number is to the calculated value
C) how close a measured number is to zero
D) how close a measured number is to infinity
E) how close a measured number is to the true value

Answer: E
4) Which one of the following is an intensive property?
A) temperature
B) length
C) amount
D) volume
E) mass

Answer: A
5) What would be the volume of a box that measures $1.12 \mathrm{~m} \times 1.00 \mathrm{~m} \times 0.69 \mathrm{~m}$?
A) 0.7728
B) 0.77
C) 0.773
D) 0.772800
E) 0.77280

Answer: B
6) Consider the following selected postulates of Dalton's atomic theory:
(i) Each element is composed of extremely small particles called atoms.
(ii) Atoms are indivisible.
(iii) Atoms of a given element are identical.
(iv) Atoms of different elements are different and have different properties.

Which of the postulates is(are) no longer considered valid?
A) (iii) and (iv)
B) (ii) only
C) (iii) only
D) (ii) and (iii)
E) (i) and (ii)

Answer: D
7) The charge on an electron was determined in the \qquad .
A) cathode ray tube, by J. J. Thomson
B) Millikan oil drop experiment
C) Dalton atomic theory
D) Rutherford gold foil experiment
E) atomic theory of matter

Answer: B
8) Which isotope has 36 electrons in an atom?
A) ${ }_{80}^{36} \mathrm{Hg}$
B) ${ }_{34}^{78} \mathrm{Se}$
C) ${ }_{36}^{80} \mathrm{Kr}$
D) ${ }_{35}^{80} \mathrm{Br}$
E) ${ }_{17}^{34} \mathrm{Cl}$

Answer: C
9) The element X has three naturally occurring isotopes. The isotopic masses (amu) and \% abundances of the isotopes are given in the table below. The average atomic mass of the element is \qquad amu.

Isotope	Abundance	Mass
159 X	30.60	159.37
163 X	15.79	162.79
164 X	53.61	163.92

A) 161.75
B) 163.15
C) 162.35
D) 162.03
E) 33.33

Answer: C
10) Which formula/name pair is incorrect?
A) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3}$ iron(III) sulfite
B) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ iron(III) sulfide
C) $\mathrm{FeSO}_{4} \quad$ iron(II) sulfate
D) $\mathrm{FeS} \quad$ iron(II) sulfide
E) $\mathrm{FeSO}_{3} \quad$ iron(II) sulfite

Answer: B
11) Which of the following compounds would you expect to be ionic?
A) $\mathrm{H}_{2} \mathrm{O}$
B) CO_{2}
C) SrCl_{2}
D) $\mathrm{H}_{2} \mathrm{~S}$
E) SO_{2}

Answer: C
12) Which of the following are combustion reactions?

1) $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2) $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}$ (s)
3) $\mathrm{PbCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{PbO}$ (s) $+\mathrm{CO}_{2}$ (g)
4) $\mathrm{CH}_{3} \mathrm{OH}$ (l) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$ (l)
A) 1,3 , and 4
B) 3 and 4
C) 1 and 4
D) 2,3, and 4
E) 1, 2, 3, and 4

Answer: C
13) Calculate the percentage by mass of oxygen in $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$.
A) 19.3
B) 9.7
C) 33.4
D) 14.5
E) 29.0

Answer: E
14) What is the total number of atoms in 0.139 mol of $\mathrm{Fe}\left(\mathrm{OH}_{2}\right) 6^{3+}$?
A) 19.0
B) 1.84×10^{24}
C) 8.37×10^{22}
D) 1.59×1024
E) 2.64

Answer: D
15) Balance the following reaction and determine the coefficient of potassium hydroxide.

$$
\mathrm{K}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

A) 1
B) 2
C) 3
D) 4
E) 5

Answer: B
16) Combustion of a $0.9827-\mathrm{g}$ sample of a compound containing only carbon, hydrogen, and oxygen produced 1.900 g of CO_{2} and 1.070 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
A) $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3}$
B) $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{O}_{2}$
C) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
D) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2}$
E) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$

Answer: B
17) Lithium and nitrogen react in a combination reaction to produce lithium nitride:

$$
6 \mathrm{Li}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})
$$

How many moles of lithium are needed to produce 0.45 mol of $\mathrm{Li}_{3} \mathrm{~N}$ when the reaction is carried out in the presence of excess nitrogen?
A) 0.30
B) 0.23
C) 0.15
D) 1.35
E) 2.7

Answer: D
18) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

$$
\mathrm{PbCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{PbO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

If the reaction yield is 92.4%, how many grams of lead (II) oxide will be produced by the decomposition of 1.30 g of lead (II) carbonate?
A) 1.41
B) 1.18
C) 1.20
D) 1.00
E) 1.09

Answer: D
19) The net ionic equation for formation of an aqueous solution of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ via mixing solid $\mathrm{Al}(\mathrm{OH})_{3}$ and aqueous nitric acid is \qquad _.
A) $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Al}^{3}+(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$
B) $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$
C) $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{NO}_{3}{ }^{-}$(aq) $\rightarrow 3 \mathrm{OH}^{-}$(aq) $+\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{~s})$
D) $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow 3 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$
E) $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Al}^{3+}(\mathrm{aq})$

Answer: E
20) Which combination will produce a precipitate?
A) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ and $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
B) $\mathrm{KOH}(\mathrm{aq})$ and $\mathrm{HNO}_{3}(\mathrm{aq})$
C) $\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$ and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
D) $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
E) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$

Answer: E
21) In which reaction does the oxidation number of hydrogen change?
A) $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)$
B) $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
C) $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
D) $2 \mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
E) $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$

Answer: C
22) Which of the following are weak electrolytes?
HNO_{3}
HF
NH_{3}
LiBr
A) $\mathrm{HNO}_{3}, \mathrm{HF}, \mathrm{NH}_{3}, \mathrm{LiBr}$
B) $\mathrm{HNO}_{3}, \mathrm{NH}_{3}, \mathrm{LiBr}$
C) $\mathrm{HF}, \mathrm{NH}_{3}$
D) $\mathrm{HNO}_{3}, \mathrm{LiBr}$
E) $\mathrm{HF}, \mathrm{LiBr}$

Answer: C
23) How many moles of K^{+}are present in 343 mL of a 1.27 M solution of $\mathrm{K}_{3} \mathrm{PO}_{4}$?
A) 3.70
B) 0.145
C) 1.31
D) 0.436
E) 11.1

Answer: C
24) The molarity (M) of an aqueous solution containing 85.1 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in 128 mL of solution is
\qquad
A) 665
B) 0.665
C) 0.0019
D) 0.249
E) 1.94

Answer: E
25) A 31.5 mL aliquot of HNO_{3} (aq) of unknown concentration was titrated with 0.0134 M NaOH (aq). It took 23.9 mL of the base to reach the endpoint of the titration. The concentration (M) of the acid was \qquad .
A) 0.0204
B) 0.0102
C) 0.0051
D) 1.02
E) 0.227

Answer: B

