Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Which one of the following compounds acts as a Bronsted-Lowry acid when dissolved in water?

- A) HF
- B) HNO₂
- C) CH₃COOH
- D) (CH₃)₃NH⁺
- E) all of the above

Answer: E

2) Using the data in the table, the conjugate base of which acid is the strongest base?

Acid	к _а
HOAc	1.8 × 10 ⁻⁵
HCHO ₂	1.8 × 10-4
HCIO	3.0 × 10 ⁻⁸
HF	6.8 × 10 ⁻⁴

 A) F B) CIO C) CHO2 D) OAc E) HCIO

```
Answer: A
```

3) Of the following substances, an aqueous solution of ______ will form <u>basic</u> solutions.

NaHS Cu(NO₃)₂ KHCO₃ NaF

A) NaHS, KHCO $_3$ and NaF B) NaF, KHCO $_3$

- C) NaHS, Cu(NO₃)₂
- D) KHCO₃, NaHS
- E) NaF only

Answer: A

4) The conjugate base of CH₃NH₃⁺ is _____.

- A) CH₃NH₂
- B) CH₃NH₂-
- C) CH₃NH₂⁺
- D) CH₃NH⁺
- E) none of the above
- Answer: A

5) The K_a of acetic acid (CH₃COOH) is 1.8×10^{-5} . What is the pH at 25.0 °C of an aqueous solution that is 0.100 M in acetic acid?

A) -2.87	B) +11.13	C) +2.87	D) +6.61	E) -11.13
Answer: C				

6) A- is a weak base.	Which equilibrium corre	esponds to the equili	brium constant K _a for HA	?
A) A- (aq) + H ₃	O+ (aq) ≓ HA (aq) + H	H ₂ O (I)		
B) HA (aq) + H	₂ 0 (I) 🛁 H ₃ 0+ (aq) + A	A- (aq)		
C) HA (aq) + H	$_{2}O(I) \Longrightarrow H_{2}A^{+}(aq) + O$	OH⁻ (aq)		
D) A⁻ (aq) + H ₂	0 (I) 🛁 HA (aq) + OH	- (aq)		
E) A⁻ (aq) + OF	I- (aq) H OA ² - (aq)			
Answer: B				
7) Which of the follow A) NH ₄ I	wing salts will produce a B) NaNO ₃	n acidic solution? C) KBr	D) Sr(CIO ₄) ₂	E) K ₂ CO ₃
Answer: A				
 8) What change will hydrogen fluoride A) The concentr B) The concentr C) The concentr D) The fluoride E) The concentr Answer: B 	be caused by addition of ? ration of hydronium ions ration of hydrogen fluorid ration of hydroxyl ion will ions will precipitate out o ration of fluoride ion will	a small amount of H will increase signific de will increase. I increase slightly. of solution as its acic increase.	CI to a solution containing cantly. I salt.	fluoride ions and
9) Which of the follow A) NaOH Answer: E	wing could be added to a B) CH3COONa	solution of NaF to p C) NH3	prepare a buffer? D) KF	E) HBr

10) Which solution has the greatest buffering capacity?

A) 0.985 M NH₃ and 0.090 M NH₄Cl \degree

B) 0.200 M NH_3 and 0.765 M NH_4Cl

C) 0.540 M NH₃ and 0.550 M NH₄Cl

D) 0.335 M NH₃ and 0.400 M NH₄Cl

E) They are all buffer solutions and would all have the same capacity.

Answer: C

Consider the following table of K_{sp} values.

Name	Formula	K _{sp}
Cadmium carbonate	CdCO ₃	5.2 × 10-12
Cadmium hydroxide	Cd(OH) ₂	2.5 × 10-14
Calcium fluoride	CaF ₂	3.9 × 10-11
Silver iodide	Agl	8.3 × 10-17
Zinc carbonate	ZnCO3	1.4 × 10-11

11) Which compound listed below has the smallest molar solubility in water?

A) Agl	B) CaF ₂	C) Cd(OH) ₂	D) ZnCO3	E) CdCO3
Answer: A				

- 12) The pH of a solution prepared by mixing 50.0 mL of 0.125 M NaOH and 40.0 mL of 0.125 M HNO3 is ______

 A) 7.00
 B) 12.14
 C) 11.00
 D) 8.11
 E) 13.29

 Answer: B
- 13) Calculate the maximum concentration (in M) of silver ions (Ag⁺) in a solution that contains 0.025 M of CO_3^{2-} .

The K_{sp} of Ag₂CO₃ is 8.1×10^{-12} . A) 3.2×10^{-10} B) 1.8×10^{-5} C) 8.1×10^{-12} D) 1.4×10^{-6} E) 2.8×10^{-6} Answer: B

14) A 25.0 mL sample of 0.150 M hydrazoic acid (HN₃) is titrated with a 0.150 M NaOH solution. What is the pH after 26.0 mL of base is added? The K_a of hydrazoic acid is 1.9×10^{-5} .

A) 2.54 B) 4.74 C) 7.00 D) 4.70 E) 11.47 Answer: E

15) In which of the following aqueous solutions would you expect AgI to have the highest solubility?

- A) 0.050 M Nal
- B) 0.010 M AgNO3
- C) 0.050 M Bal₂
- D) pure water
- E) 0.050 M KI

Answer: D

16) A reaction that is spontaneous as written _____.

- A) will proceed without input of matter or energy into the system
- B) is also spontaneous in the reverse direction
- C) has an equilibrium position that lies far to the left
- D) is very slow
- E) is very rapid

Answer: A

- 17) Which of the following statements is <u>false</u>?
 - A) The change in entropy in a system depends on the initial and final states of the system and the path taken from one state to the other.
 - B) The total entropy of the universe increases in any spontaneous process.
 - C) Any irreversible process results in an overall increase in entropy.
 - D) Entropy increases with the number of microstates of the system.

Answer: A

- 18) Consider a pure crystalline solid that is heated from absolute zero to a temperature above the boiling point of the liquid. Which of the following processes produces the greatest increase in the entropy of the substance?
 - A) vaporizing the liquid
 - B) heating the liquid
 - C) heating the solid
 - D) melting the solid
 - E) heating the gas

Answer: A

19) ΔS is positive for the reaction ____

A) HCl (g) + NH₃ (g) →NH₄Cl (s)

B) 2 Ca (s) + O₂ (g) →2 CaO (s)

C) $CO_2(g) \rightarrow CO_2(s)$

D) 2 KClO₃ (s) \rightarrow 2KCl (s) + 3 O₂ (g)

E) Pb²⁺ (aq) + 2Cl⁻ (aq) →PbCl₂ (s)

Answer: D

- 20) With thermodynamics, one cannot determine _____.
 - A) the direction of a spontaneous reaction
 - B) the speed of a reaction
 - C) the temperature at which a reaction will be spontaneous
 - D) the value of the equilibrium constant
 - E) the theoretical yield of a reaction

Answer: B

21) For the reaction

2 C₄H₁₀ (g) + 13 O₂ (g) →8 CO₂ (g) + 10 H₂O (g)

 Δ H° is -125 kJ/mol and Δ S° is +253 J/K · mol. This reaction is _____.

- A) spontaneous at all temperatures
- B) spontaneous only at low temperature
- C) nonspontaneous at all temperatures
- D) spontaneous only at high temperature
- E) unable to determine without more information

Answer: A

22) Consider the reaction:

FeO (s) + Fe (s) + O₂ (g) → Fe₂O₃ (s)

Given the following table of thermodynamic data,

Substance	$\Delta H_{f^{\circ}}$ (kJ/mol)	S° (J/mol · K)
FeO (s)	-271.9	60.75
Fe (s)	0	27.15
O ₂ (g)	0	205.0
Fe ₂ O ₃ (s)	-822.16	89.96

determine the temperature (in °C) at which the reaction is nonspontaneous.

A) above 2438

B) below 2438

C) below 618.1

D) between 756.3 and 1051.2

E) This reaction is spontaneous at all temperatures.

Answer: A

23) Consider the formation of solid silver chloride from aqueous silver and chloride ions.

Substance	$e \mid \Delta H_{f}^{\circ}$ (kJ/mol)	S° (J/K∙ mol)			
Ag+ (aq)	105.90	73.93	-		
CI- (aq)	-167.2	56.5			
AgCI(s)	-127.0	96.11			
The value of K for A) 1.8 × 10 ⁴	the reaction at 25 B) 5.3 × 10	°C is	(R = 8.314 J/k) 810	K·mol) D) 3.7 × 10 ¹⁰	E) 1.9 × 10-10
Answer: B					

Given the following table of thermodynamic data at 298 K:

Use the table below to answer the questions that follow.

$\Delta H^{\circ}f$ (kJ/mol)	$\Delta G^{\circ} f$ (kJ/mol)	S° (J/K-mol)
) 1.88	2.84	2.43
0	0	5.69
226.7	209.2	200.8
52.30	68.11	219.4
-84.68	-32.89	229.5
-110.5	-137.2	197.9
-393.5	-394.4	213.6
0	0	130.58
0	0	205.0
-285.83	-237.13	69.91
	∆H°f (kJ/mol)) 1.88 0 226.7 52.30 -84.68 -110.5 -393.5 0 0 -285.83	$\begin{array}{c c} \Delta H^{\circ}f(kJ/mol) & \Delta G^{\circ}f(kJ/mol) \\ \end{array} \\ \begin{array}{c} \Delta G^{\circ}f(kJ/mol) & \\ & & \\ 0 & 0 \\ 226.7 & 209.2 \\ 52.30 & 68.11 \\ -84.68 & -32.89 \\ -110.5 & -137.2 \\ -393.5 & -394.4 \\ \end{array} \\ \begin{array}{c} 0 & 0 \\ 0 \\ 0 \\ -285.83 & -237.13 \end{array}$

Thermodynamic Quantities for Selected Substances at 298.15 K (25 °C)

24) The value of ΔS° for the catalytic hydrogenation of acetylene to ethane,

 $C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$

is	J/K · mol.				
A) -232.	5	B) -76.0	C) +440.9	D) +232.5	E) +28.7
Answer: A	,				
25) Of the follo	wing, which i	s the strongest acid?			
A) HNO	2	B) H ₂ SeO ₄	C) H ₂ SeO ₃	D) H ₂ SO ₃	E) H ₂ SO4

Answer: E