1101 Final Exam_01/19/22_(A)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The electron-domain geometry and the molecular geometry of a molecule of the general formula AB_n will

 always be the same if A) n is less than four B) the octet rule is obeyed C) there is more than one central atom D) there are no lone pairs on the central atom E) n is greater than four 	
 2) For molecules of the general formula AB_n, n can be greater t A) only when A is boron or beryllium B) only when A is carbon C) only when A is an element from the third period or be D) for any element A E) only when A is Xe Answer: C 	than four Iow the third period
 3) Three monosulfur fluorides are observed: SF₂, SF₄, and SF₆ A) SF₆ only B) SF₂ only C) SF₂, SF₄, and SF₆ D) SF₂ and SF₄ only E) SF₄ only Answer: D 	. Of these, is/are polar.
A) There are σ honds and π honds in HaC-	$CH_{2}-$
A) 12, 2 B) 16, 3 C) 14, 2 Answer: B	D) 13, 2 E) 10, 3
5) Of the following, the central atom is sp^3d^2 hybridized only	in
A) XeF ₄ B) BeF ₂ C) Br ₃ - Answer: A	D) PH ₃ E) PCI ₅
6) Which of the following molecules or ions will exhibit deloca	lized bonding?
SO ₂ SO ₃ SO ₃ ²⁻	

A) SO₃²⁻ only

B) SO_2 and SO_3

C) SO₂, SO₃, and SO₃²⁻

D) SO₃ and SO₃²⁻

E) None of the above will exhibit delocalized bonding.

Answer: B

7) Of the following,		appear(s) to gain mass in a magnetic field.				
B	2	N ₂	0 ₂			
A) N ₂ a Answer: E	ind C 3	D ₂	B) B ₂ and O ₂	C) N ₂ only	D) B_2 and N_2	E) O ₂ only
8) The order of MO energies in B ₂ , C ₂ , and N ₂ ($\sigma_{2p} > \pi_{2p}$), is different from the order in O ₂ , F ₂ , and Ne ₂ ($\sigma_{2p} < \pi_{2p}$). This is due to A) less effective overlap of p orbitals in B ₂ , C ₂ , and N ₂ B) greater 2s-2p interaction in O ₂ , F ₂ , and Ne ₂ C) greater 2s-2p interaction in B ₂ , C ₂ , and N ₂ D) the more metallic character of boron, carbon and nitrogen as compared to oxygen, fluorine, and neon E) less effective overlap of p orbitals in O ₂ , F ₂ , and Ne ₂ Answer: C						
9) A sample flask. The the flask.	9) A sample of gas (1.9 mol) is in a flask at 21 °C and 697 mm Hg. The flask is opened and more gas is added to the flask. The new pressure is 841 mm Hg and the temperature is now 26 °C. There are now mol of gas in the flask.					
A) 2.9 Answer: (2		B) 0.28	C) 2.3	D) 1.6	E) 3.5
10) The densit A) 0.829 Answer: (y of) C	HCN is	g/L at STP. B) 2.21	C) 1.21	D) 329	E) 605
11) Zinc react	s wit	h aqueo	us sulfuric acid to forr	n hydrogen gas:		
$Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$						
In an expe many grar	In an experiment, 201 mL of wet H ₂ is collected over water at 27 °C and a barometric pressure of 765 torr. How many grams of Zn have been consumed? The vapor pressure of water at 27 °C is 26.74 torr.					
A) 4.38 Answer: E	× 106	Ď	B) 394	C) 519	D) 3.94 × 10 ⁵	E) 0.519
12) Using the a A) 1.91	van o atm.	der Waa (a = 6.49	als equation, the pressu 9 L ² -atm/mol ² , <i>b</i> = 0.0 B) 0.993	ure in a 22.4 L vesse 0562 L/mol) C) 0.676	containing 1.50 mol of cl D) 1.50	hlorine gas at 0.00 °C is E) 1.48
13) A 255 mL vaporized vaporizes the flask is vapor is 1 atm.)	roun liqui at th s rem 15.23	id-botto id are ac e boiling ioved fro g. Whic	om flask is weighed an dded to the flask and t g temperature of wate om the bath, cooled, d ch of the following cor	d found to have a m he flask is immersed r, filling the flask wi ried, and reweighed npounds could the l	ass of 114.85 g. A few mi d in a boiling water bath. th vapor. When all of the l. The new mass of the fla iquid be? (Assume the ar	Ililiters of an easily All of the liquid Iquid has vaporized, isk and the condensed nbient pressure is 1

A) C₃H₇OH B) C₄H₉OH C) C₄H₁₀ D) C₂H₆ E) C₂H₅OH Answer: E

 14) How much faster doe A) 1.013 times as fa B) 1.009 times as fa C) 1.004 times as fa D) 1.018 times as fa E) 1.006 times as fa 	s 235UF ₆ effuse than 238L st st st st st st	JF ₆ ?		
 15) According to kinetic-molecules be the high A) N₂O B) O₂ C) UF₆ D) NH₃ E) None. The mole Answer: D 	molecular theory, in whicl est at 200 °C? cules of all gases have the	h of the following gases same root-mean-squa	s will the root-mean-sq re speed at any given te	uare speed of the mperature.
16) Which one of the follo A) SiO ₂	owing exhibits dipole-dip B) Cl ₂	ole attraction between C) CBr ₄	molecules? D) AsH3	E) BH ₃
Answer: D				
 17) Of the following subs A) CH₃CH₂OH B) Cl₂ C) HOCH₂CH₂CH D) C₄H₁₀ E) N₂ Answer: C 	tances, has the h	ighest boiling point.		
18) The enthalpy change for converting 10.0 g of ice at -50.0 °C to water at 50.0 °C is kJ. The specific heats of ice, water, and steam are 2.09 J/g-K, 4.18 J/g-K, and 1.84 J/g-K, respectively. For H ₂ O, ΔH _{fus} = 6.01 kJ/mol,				
A) 4.38 Answer: D	B) 3138	C) 9.15	D) 6.47	E) 12.28
19) Of the following, A) C ₂ H ₆ Answer: A	is the most volatile. B) C ₂ Cl ₆	C) C ₂ Br ₆	D) C ₂ I ₆	E) C ₂ F ₆
20) Which will have a lar A) GaP B) GaAs C) GaN D) GaSb E) All choices have Answer: C	ger band gap: GaN, GaP, (identical band gaps.	GaAs, or GaSb?		

- 21) Potassium metal crystallizes in a body-centered cubic structure with a unit cell edge length of 5.31 Å. The radius of a potassium atom is _____ Å.
 - A) 1.33 B) 2.30 C) 5.31 D) 1.88 E) 2.66 Answer: B
- 22) A solid has a very high melting point, great hardness, and poor electrical conduction. This is a(n) ______ solid.
 - A) covalent network
 - B) ionic
 - C) metallic and covalent network
 - D) molecular
 - E) metallic
 - Answer: A

23) For a substitutional alloy to form, the two metals combined must have similar

- A) atomic radii and chemical bonding properties.
- B) band gap and reactivity.
- C) number of valance electrons and electronegativity.
- D) ionization potential and electron affinity.
- E) reduction potential and size.

Answer: A

- 24) Covalent bonding occurs in both molecular and covalent-network solids. Which of the following statements best explains why these two kinds of solids differ so greatly in their hardness and melting points?
 - A) The molecules in molecular solids have stronger covalent bonding than covalent-network solids do.
 - B) The molecules in molecular solids are held together by weak intermolecular interactions.
 - C) The atoms in covalent-network solids are more polarizable than those in molecular solids.
 - D) Molecular solids are denser than covalent-network solids.

Answer: B

E) All of the above are wrong.

25) Which type of liquid crystal is colored and changes color with temperature?

-	A) smectic B	B) nematic	C) cholesteric	D) smectic C	E) smectic A

Answer: C