112-2 Semester General Chemistry Final Exam (A) -2024/06/12

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The second law of thermodynamics states that ______.

A) ∆E = q + w

B) $\Delta S = q_{rev}/T$ at constant temperature

C) for any spontaneous process, the entropy of the universe increases

D) $\Delta H^{\circ}_{rxn} = \Sigma n \Delta H^{\circ}_{f}$ (products) - $\Sigma m \Delta H^{\circ}_{f}$ (reactants)

E) the entropy of a pure crystalline substance is zero at absolute zero

Answer: C

2) A reversible process is one that _____

A) must be carried out at low temperature

B) is spontaneous in both directions

C) must be carried out at high temperature

D) can be reversed with no net change in either system or surroundings

E) happens spontaneously

Answer: D

3) Which one of the following processes produces a decrease of the entropy of the system?

A) sublimation of naphthalene

B) dissolving oxygen in water

C) dissolving sodium chloride in water

- D) explosion of nitroglycerine
- E) boiling of alcohol

Answer: B

4) ΔS is negative for the reaction _____.

A) 2C (s) + O_2 (g) \rightarrow 2CO₂ (g)

B) $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

C) PbCl₂ (s) \rightarrow Pb²⁺ (aq) + 2Cl⁻ (aq)

- D) NH₄Cl (s) \rightarrow NH₃ (g) + HCl (g)
- E) H2O (I) →H2O (g)

Answer: B

5) For the reaction

 $2 \text{ C}_4\text{H}_{10} \text{ (g)} + 13 \text{ O}_2 \text{ (g)} \rightarrow 8 \text{ CO}_2 \text{ (g)} + 10 \text{ H}_2\text{O} \text{ (g)}$

 Δ H° is -125 kJ/mol and Δ S° is +253 J/K · mol. This reaction is _____.

A) spontaneous at all temperatures

B) spontaneous only at low temperature

C) spontaneous only at high temperature

D) nonspontaneous at all temperatures

E) unable to determine without more information

Answer: A

6) With thermodynamics, one cannot determine _____

- A) the speed of a reaction
- B) the temperature at which a reaction will be spontaneous
- C) the direction of a spontaneous reaction
- D) the value of the equilibrium constant
- E) the extent of a reaction

Answer: A

7) Consider the reaction:

CCI4 (I) 🛁 CCI4 (g)

Given the following table of thermodynamic data,

Substance	ΔH_{f}° (kJ/mol)	S° (J/mol · K)
CCI4 (g)	- 106.7	309.4
CCI4 (I)	-139.3	214.4

Determine the norma	l boiling	point of	CCI4.
---------------------	-----------	----------	-------

A) 15 °C	B) 70 °C	C) 83 °C	D) 112 °C	E) 183 °C
Answer: B				

8) Consider the reaction:

 NH_3 (g) + HCI (g) $\rightarrow NH_4CI$ (s)

Given the following table of thermodynamic data,

determine the lowest temperature (in °C) above which the reaction is nonspontaneous.

A) 345.0

- B) 432.8
- C) 618.1
- D) 1235
- E) This reaction is spontaneous at all temperatures.

Answer: A

9) Which of the following statements is true? (Q: reaction quotient)

A) If Q = 0, the system is at equilibrium

- B) The larger the Q, the larger the ΔG°
- C) If a reaction is spontaneous under standard conditions, it is spontaneous under all conditions
- D) The free-energy change for a reaction is independent of temperature.
- E) If Q > 1, $\Delta G > \Delta G^{\circ}$.

Answer: E

10) The Ksp for a very insoluble salt is 4.2×10^{-47} at 298 K. What is ΔG° for the dissolution of the salt in water? (R = 8.314 J•mol⁻¹•K⁻¹)

A) -265 kJ/mol B) -115 kJ/mol C) -2.61 kJ/mol D) +115 kJ/mol E) +265 kJ/mol Answer: E

11) What is the coefficient of the dichromate ion when the following equation is balanced?

Fe ²⁺ + C	$Cr_2O_7^{2-} \rightarrow Fe^{3+} + Cr^{3+}$	(acidic solution))	
A) 1	B) 5	C) 3	D) 6	E) 2
Answer: A				

12) Which substance is the oxidizing agent in the following reaction?

Fe₂S₃ + 12HNO₃ → 2Fe(NO₃)₃ + 3S + 6NO₂ + 6H₂O A) NO₂ B) S C) HNO₃ D) H₂O E) Fe₂S₃

Answer: C

Table 1 Standard reduction potential

Half Reaction	Ered°(V)
Al ³⁺ (aq) + 3e ⁻ →Al (s)	-1.66
Zn ³⁺ (aq) + 3e ⁻ →Zn (s)	-0.76
Cr^{3+} (aq) + $3e^{-} \rightarrow Cr$ (s)	-0.74
Fe^{2+} (aq) + $2e^{-} \rightarrow Fe$ (s)	-0.440
Ni ²⁺ (aq) + 2e ⁻ →Ni (s)	-0.28
$Cu^{2+} + 2e^{-} \rightarrow Cu (s)$	+0.34
Fe^{3+} (aq) + $e^- \rightarrow Fe^{2+}$ (aq)	+0.771
Sn^{4+} (aq) + 2e ⁻ $\rightarrow Sn^{2+}$ (aq)	+0.154

13) At standard state, which of the following reactions will occur spontaneously as written? (Ered° Refer Table 1)

A) $Sn^{4+}(aq) + Fe^{2+}(aq) \rightarrow Sn^{2+}(aq) + Fe (s)$ B) $Sn^{4+}(aq) + Fe^{3+}(aq) \rightarrow Sn^{2+}(aq) + Fe^{2+}(aq)$ C) $3Fe^{2+}(aq) \rightarrow Fe (s) + 2Fe^{3+}(aq)$ D) $3Fe (s) + 2Cr^{3+}(aq) \rightarrow 2Cr (s) + 3Fe^{2+}(aq)$ E) $3Sn^{4+}(aq) + 2Cr (s) \rightarrow 2Cr^{3+}(aq) + 3Sn^{2+}(aq)$ Answer: E

14) Calculate the electromotive force at 298 K generated by a voltaic cell in which the reaction is

 $\begin{array}{l} 2Fe^{3+}(aq) + Cu(s) \rightarrow 2Fe^{2+}(aq) + Cu^{2+}(aq) \\ When \ [Cu^{2+}] = 0.50 \ M, \ [Fe^{3+}] = 0.20 \ M, \ and \ [Fe^{2+}] = 0.10 \ M. \ (Ered^{\circ} \ Refer \ Table \ 1) \\ A) - 0.358 \ V \qquad B) - 0.158 \ V \qquad C) + 0.229 \ V \qquad D) + 0.431 \ V \qquad E) + 0.458 \ V \\ Answer: \ E \end{array}$

- 15) Based on the values in Table 1, which of these metals could provide cathodic protection to iron: AI, Cu, Ni, Zn?
 A) AI and Cu
 B) Cu and Ni
 C) AI and Zn
 D) Ni and Zn
 Answer: C
- 16) The standard cell potential (E°) of a voltaic cell constructed using the cell reaction below is 0.76 V:

 $Zn(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2(g)$

With $P_{H_2} = 1.0$ atm and $[Zn^{2+}] = 1.0$ M, the cell potential is 0.66 V. The concentration of H⁺ in the cathode compartment is ______ M. A) 4.9×10^1 B) 1.4×10^{-1} C) 4.2×10^{-4} D) 2.0×10^{-2} E) 1.0×10^{-12} Answer: D

17) The relationship between the change in Gibbs free energy and the emf of an electrochemical cell is given by

A)
$$\Delta G = \frac{-E}{nF}$$

B) $\Delta G = -nFE$
C) $\Delta G = -nRTF$
D) $\Delta G = \frac{-nF}{ERT}$
E) $\Delta G = \frac{-nF}{E}$

Answer: B

- 18) A concentration cell is constructed with two $Zn_{(s)} Zn^{2+}_{(aq)}$ half-cells. In one half-cell $[Zn^{2+}] = 1.35$ M, and in the other $[Zn^{2+}] = 3.75 \times 10^{-4}$ M. What is the emf generated by the cell and what is the identity of the electrode that is immersed the half-cell in which $[Zn^{2+}] = 3.75 \times 10^{-4}$ M?
 - A) 0.210 V, cathode B) - 0.105 V, anode
 - C) + 0.105 V, anode
 - D) + 0.105 V, cathode
 - E) + 0.210 V, anode

Answer: C

19) Reduction occurs at the ____

A) anode, in both galvanic and electrolytic cells.

B) anode in galvanic cells and cathode in electrolytic cells.

C) cathode, in both galvanic and electrolytic cells.

D) cathode in galvanic cells and anode in electrolytic cells.

Answer: C

20) How many seconds are required to produce 4.00 g of aluminum metal from the electrolysis of molten AICI₃ with an electrical current of 12.0 A?

A) 1.19 × 10 ³	B) 27.0	C) 9.00	D) 3.57 × 10 ³	E) 2.90 × 10 ⁵
Answer: D				

21) Galvanized iron is	iron coated with			
A) zinc.	B) magnesium.	C) phosphate.	D) chromium.	E) iron oxide.
Answer: A				
22) Transition metals c	liffer from main group me	etals because transition	metals	
A) do not react v	vith nonmetals.	B) are	all the same color.	
C) can have mul	tiple oxidation states.	D) hav	ve very low densities.	
Answer: C				
23) All ligands have				
 A) negative char 	ges.	B) pos	sitive charges.	
C) at least two a	toms.	D) at l	east one Ione pair.	
Answer: D				
24) What is the name o	of the compound [Rh(NH3) ₄ Cl ₂]Cl?		
A) Rhodium(III)	tetraamminedichloro chlo	oride		
B) Tetraammoni	adichlororhodium(III) chl	oride		
C) Tetraammine	dichlororhodium(III) chlo	ride		
D) Tetraammine	trichlororhodium(III)			
E) Tetraammine	dichlororhodium(II) chlor	Ide		
Answer: C				
25) In the coordination	compound [Pt(NH ₃) ₂ Cl ₂],	the oxidation number	of Pt is, and its coor	dination number is
· A) +4, 4	B) +2, 4	C) +4, 2	D) +2, 2	E) -4, 2
Answer: B				
26) Why does Ti ⁵⁺ not	exist?			
A) Electron affin	ity is too large.			
B) Ionization en	ergy is too small.			
C) It produces a	n ion that is too small in si	ze to be stable.		
D) The energy re	equired to remove core ele	ctrons is too large.		
Answer: D				
27) Why are compound	ds of Ti(IV) colorless?			
A) Ti(IV) has los	t half of its valence electro	ns, and these cannot be	e excited to higher energ	gy orbitals.
B) Ti(IV) only at	psorbs light in the infrared	region of the spectrun	n.	

- C) Ti(IV) has no d electrons, and therefore, no d-d electron transitions can occur in the visible region.
- D) Ti(IV) has only one unpaired d electron in the valence shell that can be excited to a higher energy d orbital; the energy gap is not in the visible region.

Answer: D 改為C

28) What property of the porphine ligand makes it possible for chlorophyll to play a role in plant photosynthesis?

- A) It has a planar structure that enables the C—H bonds to absorb light in the visible region.
- B) The C—C bonds absorb light in the ultraviolet region.
- C) It has conjugated double bonds that absorb light in the visible region.
- D) It has C—H bonds that absorb light in the infrared region.

Answer: C

29) Which one of the followin	g complexes can exhibit geo	metrical isomerism?	
A) [Pt(NH ₃) ₂ Cl ₂] (squa	ire planar)	B) [Cu(NH ₃) ₅ Cl] ²⁺ (or	tahedral)
C) [Zn(NH3)2Cl2] (tetr	ahedral)	D) [Cu(NH ₃) ₄] ²⁺ (squ	are planar)
Answer: A			
30) Using the following abbre the red region of the visibl	viated spectrochemical serie e spectrum.	s, determine which complex i	on is most likely to absorb liږ <mark>light</mark>
small splitting CI- <	\times H ₂ O < NH ₃ < CN ⁻ larg	e splitting	
A) [CuCl ₄] ²⁻	B) [Cu(CN) ₄] ²⁻	C) [Cu(H ₂ O) ₄] ²⁺	D) [Cu(NH ₃) ₄] ²⁺
Answer: A			
31) Which one of the followin A) $[Zn(NH_3)_4]^{2+}$ B) $[E_2(H_2O)_4]^{3+}$ (low s	g complex ions will be parar	nagnetic?	
C) $[Fe(H_2O)_6]^{\circ+}$ (IOW S)	pin) nin)		
D) $[7n(H_2O)_6]^{-1}$ (100 3	piny		
E) [Co(H ₂ O) ₆] ³⁺ (low s	spin)		
Answer: B			
32) C ₁₀ H ₂₂ is the molecular for A) alkane C) alkyne	rmula of an	B) alkene D) aromatic hydrocarb	on
Answer: A			
 33) Which compound does not A) 1,2,3,4,5,6,7-octahep B) cis-4-decene C) cis-2-butane D) trans-3-hexene E) 1-propene 	t exist? taene		
Answer: C			
 34) What product is formed fr A) propane B) butane C) 2-methylbutane D) 2-methylpropane E) 2-methylpropyne Answer: B 	om the hydrogenation of 2-	methylpropene?	

35) Hybridization of the	carbon atom indicate	d by (*) in CH3- [*] Cl	H2-CH3, *CH2=CH2, and	d CH3- [*] C≡CH is
,,	and, respec	tively.		
A) sp, sp ³ , sp ²				
B) sp ³ , sp ² , sp				
C) sp ³ , sp, sp ²				
D) sp, sp ² , sp ³				
E) sp ² , sp ³ , sp				
Answer: B				
36) How many chiral ce	nters are there in CH3	CHCICH2CH2CHE	3rCH ₃ ?	
A) 4	B) 3	C) 1	D) 2	E) 0
Answer: D				
37) What chemical proce	ess is happening whe	۲ formic acid is con	verted back to methane?	
A) Reduction	B) Oxidat	ion C	C) Hydration	D) Dehydration
Answer: A				

38) If each of the following represents an alkane, and a carbon atom is located at each vertex with the proper number of hydrogen atoms also bonded to it, which one is the most reactive?

E) They are all equally reactive since they are all alkanes.

Answer: A

39) Alcohols are hydrocarbon derivatives in which one or more hydrogens have been replaced by a hydroxyl functional group is the general formula of an alcohol

ranotional group				
A) R—O—R	B) R-CO-R	C) R—CO—H	D) R—OH	E) R—CO—OH
Answer: D				

40) Which of the following contains a peptide linkage?

Answer: B