Name \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Which metal will produce the most hydrogen per gram of metal?
A) $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
B) $\mathrm{Sn}+4 \mathrm{HCl} \rightarrow \mathrm{SnCl}_{4}+2 \mathrm{H}_{2}$
C) $2 \mathrm{Cr}+6 \mathrm{HCl} \rightarrow 2 \mathrm{CrCl}_{3}+3 \mathrm{H}_{2}$
D) $2 \mathrm{Li}+2 \mathrm{HCl} \rightarrow 2 \mathrm{LiCl}+\mathrm{H}_{2}$
E) $2 \mathrm{Fe}+6 \mathrm{HCl} \rightarrow 2 \mathrm{FeCl}_{3}+3 \mathrm{H} 2$

Answer: D
2) Potassium superoxide $\left(\mathrm{KO}_{2}\right)$ can simulate a plant- type action by consuming carbon dioxide gas and releasing oxygen gas. The other product is potassium carbonate. When the equation for this process is balanced, it shows that:
A) 3 g of oxygen is produced per 2 g CO 2 consumed
B) 3 mol oxygen is produced per mol KO_{2} consumed
C) moles of products exceed moles of reactants
D) $2 \mathrm{~mol} \mathrm{KO}_{2}$ is consumed per mol carbon dioxide
E) moles of reactants equals moles of product

Answer: D
3) You have 10.00 L of a 0.350 M KCl solution, but you need a solution that is 0.450 M . What volume of water, in L , would you evaporate from the solution?
A) 2.85 L
B) 4.38 L
C) 2.22 L
D) 3.50 L
E) 7.77 L

Answer: C
4) The chemical reaction during low current discharge of a simple "dry cell" involves:
(unbalanced) $\mathrm{Zn}+\mathrm{MnO}_{2}+\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{Mn}_{2} \mathrm{O}_{3}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
What is the coefficient for zinc in the balanced equation, and what is the limiting reagent for a process in which equal masses of reactants are mixed?
A) $2 \mathrm{MnO}_{2}$
B) $1 / \mathrm{Zn}$
C) 2 NH 4 Cl
D) $2 / \mathrm{Zn}$
E) 1 MnO 2

Answer: E
5) In which of the following cases is the gas most likely to behave as an ideal gas?
A) $\mathrm{Ne}(\mathrm{g}), 375{ }^{\circ} \mathrm{C}, 0.75 \mathrm{~atm}$
B) $\mathrm{He}(\mathrm{g}), 37.5 \mathrm{~K}, 7500$ torr
C) $\mathrm{SF}_{6},-37.5^{\circ} \mathrm{C}, 0.75 \mathrm{~atm}$
D) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), 375 \mathrm{~K}, 750$ torr
E) $\mathrm{CH} 4(\mathrm{~g}), 37.5^{\circ} \mathrm{C}, 7.5 \mathrm{~atm}$

Answer: A
6) A gaseous mixture consists of $50.0 \% \mathrm{O}_{2}, 25.0 \% \mathrm{~N}_{2}$, and $25.0 \% \mathrm{Cl}_{2}$, by mass. At standard temperature and pressure, the partial pressure of:
A) $\mathrm{Cl}_{2}(\mathrm{~g})$ is less than 0.25 atm
B) $\mathrm{O}_{2}(\mathrm{~g})$ is equal to 1.6 atm
C) $\mathrm{O}_{2}(\mathrm{~g})$ is equal to 380 torr
D) $\mathrm{Cl}_{2}(\mathrm{~g})$ is greater than 0.25 atm
E) $\mathrm{N}_{2}(\mathrm{~g})$ is equal to 0.20 atm

Answer: A
7) Using the heat of combustion of methanol as -726.6 kJ and the following data:
C (graph) $+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}(\mathrm{g}) \quad \Delta H^{\circ}=-110.5 \mathrm{~kJ}$
$\mathrm{C}($ graph $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=-393.5 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H^{\circ}=-285.8 \mathrm{~kJ}$
Determine ΔH° for the following reaction: $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
A) 157.8 kJ
B) 128 kJ
C) -128 kJ
D) -349 kJ
E) -157.8 kJ

Answer: C
8) For the reaction $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta H^{\circ}=-241.8 \mathrm{~kJ} / \mathrm{mol}$, what quantity of heat is liberated by the reaction of 10.0 L of O 2 measured at $22.0^{\circ} \mathrm{C}$ and 742 mmHg ?
A) 120 kJ
B) 2610 kJ
C) 195 kJ
D) 97.5 kJ
E) 1310 kJ

Answer: C
9) A 12.8 g sample of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is burned in a bomb calorimeter with a heat capacity of $5.65 \mathrm{~kJ} / \mathrm{C}$. Using the information below, determine the final temperature of the calorimeter if the initial temperature is $25.0^{\circ} \mathrm{C}$. The molar mass of ethanol is $46.07 \mathrm{~g} / \mathrm{mol}$.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-1235 \mathrm{~kJ}
$$

A) $85.7^{\circ} \mathrm{C}$
B) $53.4^{\circ} \mathrm{C}$
C) $28.1^{\circ} \mathrm{C}$
D) $74.2^{\circ} \mathrm{C}$
E) $111^{\circ} \mathrm{C}$

Answer: A
10) How many moles of oxygen are formed when 58.6 g of KNO_{3} decomposes according to the following reaction? The molar mass of KNO_{3} is $101.11 \mathrm{~g} / \mathrm{mol}$.

$$
4 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{~K}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})
$$

A) $0.580 \mathrm{~mol} \mathrm{O}_{2}$
B) $0.290 \mathrm{~mol} \mathrm{O}_{2}$
C) $18.5 \mathrm{~mol} \mathrm{O}_{2}$
D) $0.724 \mathrm{~mol} \mathrm{O}_{2}$
E) $1.73 \mathrm{~mol} \mathrm{O}_{2}$

Answer: D
11) Consider the following reaction. How many moles of oxygen are required to produce 2.33 moles of water? Assume that there is excess $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}$ present.

$$
\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}(\mathrm{l})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A) 3.50 moles O_{2}
B) 1.55 moles O_{2}
C) 6.21 moles O_{2}
D) 4.14 moles O_{2}
E) 2.33 moles O_{2}

Answer: A
12) Determine the limiting reactant (LR) and the mass (in g) of nitrogen that can be formed from $50.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$ and $45.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}$. Some possibly useful molar masses are as follows: $\mathrm{N}_{2} \mathrm{O}_{4}=92.02 \mathrm{~g} / \mathrm{mol}, \mathrm{N}_{2} \mathrm{H}_{4}=32.05 \mathrm{~g} / \mathrm{mol}$.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{l})+2 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l}) \rightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A) $\mathrm{LR}=\mathrm{N}_{2} \mathrm{H}_{4}, 59.0 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}$ formed
B) $\mathrm{LR}=\mathrm{N}_{2} \mathrm{O}_{4}, 45.7 \mathrm{~g} \mathrm{~N} 2$ formed
C) $\mathrm{LR}=\mathrm{N}_{2} \mathrm{O}_{4}, 105 \mathrm{~g} \mathrm{~N} 2$ formed
D) No LR, 45.0 g N 2 formed
E) $\mathrm{LR}=\mathrm{N}_{2} \mathrm{H}_{4}, 13.3 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}$ formed

Answer: B
13) Determine the percent yield of a reaction that produces 28.65 g of Fe when 50.00 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ react with excess Al according to the following reaction.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{~s})
$$

A) 61.03%
B) 20.02%
C) 28.65%
D) 81.93%
E) 57.30%

Answer: D
14) Determine the number of grams H_{2} formed when 250.0 mL of 0.743 M HCl solution reacts with 3.41×10^{23} atoms of Fe according to the following reaction.

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Fe}(\mathrm{~s}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{FeCl}_{2}(\mathrm{aq})
$$

A) 1.14 g
B) 0.187 g
C) 1.51 g
D) 0.374 g
E) 1.33 g

Answer: B
15) What mass (in g) of AgCl is formed from the reaction of 75.0 mL of a $0.078 \mathrm{M} \mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution with 55.0 mL of $0.109 \mathrm{M} \mathrm{MgCl}_{2}$ solution?

$$
2 \mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{MgCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{AgCl}(\mathrm{~s})+\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq})
$$

A) 1.70 g
B) 0.838 g
C) 0.859 g
D) 2.56 g
E) 1.72 g

Answer: B
16) The titration of 80.0 mL of an unknown concentration $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution requires 126 mL of 0.218 M KOH solution. What is the concentration of the $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution (in M)?
A) 0.343 M
B) 1.03 M
C) 0.114 M
D) 0.138 M
E) 0.0461 M

Answer: C
17) A large balloon is initially filled to a volume of 25.0 L at 353 K and a pressure of 2575 mm Hg . What volume of gas will the balloon contain at 1.35 atm and 253 K ?
A) 58.6 L
B) 87.5 L
C) 11.4 L
D) 45.0 L
E) 22.2 L

Answer: D
18) What mass of NO_{2} is contained in a 13.0 L tank at 4.58 atm and 385 K ?
A) 69.2 g
B) 18.8 g
C) 86.7 g
D) 24.4 g
E) 53.1 g

Answer: C
19) Using the graph below, determine the gas that has the highest density at STP.

A) C
B) B
C) A
D) D
E) All of the gases have the same density at STP.

Answer: D
20) Determine the density of NH_{3} gas at 435 K and 1.00 atm .
A) $2.24 \mathrm{~g} / \mathrm{L}$
B) $2.10 \mathrm{~g} / \mathrm{L}$
C) 0.477 g L
D) $0.321 \mathrm{~g} /$
E) 0.851 g L

Answer: C
21) A compound is found to be $30.45 \% \mathrm{~N}$ and $69.55 \% \mathrm{O}$ by mass. If 1.63 g of this compound occupy 389 mL at $0.00^{\circ} \mathrm{C}$ and 775 mm Hg , what is the molecular formula of the compound?
A) $\mathrm{N}_{2} \mathrm{O}_{5}$
B) $\mathrm{N}_{2} \mathrm{O}$
C) NO_{2}
D) $\mathrm{N}_{4} \mathrm{O}_{2}$
E) $\mathrm{N}_{2} \mathrm{O}_{4}$

Answer: E
22) The following reaction is used to generate hydrogen gas in the laboratory. If 243 mL of gas is collected at $25^{\circ} \mathrm{C}$ and has a total pressure of 745 mm Hg , what mass of hydrogen is produced? A possibly useful table of water vapor pressures is provided below.

$$
\begin{array}{ccc}
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) & \mathrm{T}\left({ }^{\circ} \mathrm{C}\right) & \frac{\mathrm{P}(\mathrm{~mm} \mathrm{Hg})}{20} \\
25 & 17.55 \\
23.78 \\
30 & 31.86
\end{array}
$$

A) $0.0449 \mathrm{~g} \mathrm{H}_{2}$
B) $0.0196 \mathrm{~g} \mathrm{H}_{2}$
C) $0.0144 \mathrm{~g} \mathrm{H}_{2}$
D) $0.0717 \mathrm{~g} \mathrm{H}_{2}$
E) $0.0190 \mathrm{~g} \mathrm{H}_{2}$

Answer: E
23) What pressure would a gas mixture in a 10.0 L tank exert if it were composed of 48.5 g He and 94.6 g CO 2 at 398 K?
A) 58.7 atm
B) 39.6 atm
C) 32.6 atm
D) 7.02 atm
E) 46.6 atm

Answer: E
24) Determine the volume of SO_{2} (at STP) formed from the reaction of 96.7 g of FeS_{2} and 55.0 L of O_{2} (at 398 K and 1.20 atm). The molar mass of FeS_{2} is $119.99 \mathrm{~g} / \mathrm{mol}$.

$$
4 \mathrm{FeS}_{2}(\mathrm{~s})+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+8 \mathrm{SO}_{2}(\mathrm{~g})
$$

A) 18.1 L
B) 36.1 L
C) 27.6 L
D) 32.9 L
E) 45.3 L

Answer: D
25) A mixture of 1.0 mol He and 1.0 mol Ne are at STP in a rigid container. Which of the following statements is TRUE?
A) The mixture has a volume of 22.4 L
B) Both gases contribute equally to the density of the mixture under these conditions.
C) Both gases have the same molecular speed.
D) Both gases have the same average kinetic energy.
E) All of the above are TRUE.

Answer: D
26) Which of the gases in the graph below has the largest molar mass?

A) A
B) B
C) C
D) D
E) There is not enough information to determine.

Answer: D
27) Which of the following compounds will behave LEAST like an ideal gas at low temperatures?
A) N_{2}
B) He
C) SO_{2}
D) H_{2}
E) F_{2}

Answer: C
28) This equation is used to calculate the properties of a gas under nonideal conditions.
A) Dalton's Law
B) Avogadro's Law
C) Charles's Law
D) van der Waals equation
E) Boyle's Law

Answer: D
29) The law of \qquad states that energy that can be neither created or destroyed.
A) the consecration of energy
B) thermochemistry
C) potential energy
D) the conservation of energy
E) kinetic energy

Answer: D
30) A 21.8 g sample of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is burned in a bomb calorimeter, according to the following reaction. If the temperature rises from 25.0 to $62.3^{\circ} \mathrm{C}$, determine the heat capacity of the calorimeter. The molar mass of ethanol is $46.07 \mathrm{~g} / \mathrm{mol}$.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-1235 \mathrm{~kJ}
$$

A) $4.99 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
B) $5.65 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
C) $15.7 \mathrm{~kJ} / \mathrm{C}$
D) $63.7 \mathrm{~kJ} / \mathrm{C}$
E) $33.1 \mathrm{~kJ} / \mathrm{C}$

Answer: C
31) A 35.6 g sample of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is burned in a bomb calorimeter, according to the following reaction. If the temperature rose from 35.0 to $76.0^{\circ} \mathrm{C}$ and the heat capacity of the calorimeter is $23.3 \mathrm{~kJ} / \rho \mathrm{C}$, what is the value of $\Delta \mathrm{H}^{\circ} \mathrm{rxn}$? The molar mass of ethanol is $46.07 \mathrm{~g} / \mathrm{mol}$.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=?
$$

A) $-8.09 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$
B) $-1.24 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$
C) $+9.55 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$
D) $-9.55 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$
E) $+1.24 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$

Answer: B
32) Given $w=0$, an endothermic reaction has the following.
A) $+\Delta \mathrm{H}$ and $-\Delta \mathrm{E}$
B) $-\Delta H$ and $-\Delta E$
C) $+\Delta H$ and $+\Delta E$
D) $-\Delta H$ and $+\Delta E$

Answer: C
33) How much energy is evolved during the formation of 98.7 g of Fe , according to the reaction below?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{~s}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-852 \mathrm{~kJ}
$$

A) 753 kJ
B) $4.20 \times 10^{3} \mathrm{~kJ}$
C) 482 kJ
D) 241 kJ
E) $1.51 \times 10^{3} \mathrm{~kJ}$

Answer: A
34) Using the following equation for the combustion of octane, calculate the amount of moles of oxygen that reacts with 100.0 g of octane. The molar mass of octane is $114.33 \mathrm{~g} / \mathrm{mole}$. The molar mass of carbon dioxide is 44.0095 $\mathrm{g} /$ mole.

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-11018 \mathrm{~kJ}
$$

A) 14.00 moles
B) 6.997 moles
C) 8.000 moles
D) 18.18 moles
E) 10.93 moles

Answer: E
35) Which of the following statements is TRUE?
A) $\Delta \mathrm{H}_{\mathrm{rxn}}$ can be determined using constant pressure calorimetry.
B) $\Delta \mathrm{E}_{\mathrm{rxn}}$ can be determined using constant volume calorimetry.
C) Energy is neither created nor destroyed, excluding nuclear reactions.
D) State functions do not depend on the path taken to arrive at a particular state.
E) All of the above are true.

Answer: E
36) Two solutions, initially at $24.60^{\circ} \mathrm{C}$, are mixed in a coffee cup calorimeter ($\mathrm{C}_{\mathrm{cal}}=15.5 \mathrm{~J} / \mathrm{C}$). When a 100.0 mL volume of $0.100 \mathrm{M} \mathrm{AgNO}_{3}$ solution is mixed with a 100.0 mL sample of 0.200 M NaCl solution, the temperature in the calorimeter rises to $25.30^{\circ} \mathrm{C}$. Determine the $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the reaction as written below. Assume that the density and heat capacity of the solutions is the same as that of water.

$$
\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=?
$$

A) -35 kJ
B) -250 kJ
C) -69 kJ
D) -140 kJ
E) -16 kJ

Answer: C
37) Use the standard reaction enthalpies given below to determine $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the following reaction:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=?
$$

Given:

$$
\begin{array}{ll}
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=+183 \mathrm{~kJ} \\
1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=+33 \mathrm{~kJ}
\end{array}
$$

A) -333 kJ
B) -117 kJ
C) +238 kJ
D) +115 kJ
E) $-150 . \mathrm{kJ}$

Answer: B
38) Use the information provided to determine $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the following reaction:

	$\Delta \mathrm{H}^{\circ} \mathrm{f}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CH}_{4}(\mathrm{~g})$	-75
$\mathrm{CHCl}_{3}(\mathrm{l})$	-134
$\mathrm{HCl}(\mathrm{g})$	-92

A) +117 kJ
B) -151 kJ
C) +662 kJ
D) -217 kJ
E) -335 kJ

Answer: E
39) Which of the following is the major contributor to energy consumption?
A) industrial
B) transportation
C) commercial
D) residential
E) atmospheric

Answer: A
40) A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of $0.300 \mathrm{M} \mathrm{HNO}_{3}$ in a coffee cup calorimeter. If both solutions were initially at $35.00^{\circ} \mathrm{C}$ and the temperature of the resulting solution was recorded as $37.00^{\circ} \mathrm{C}$, determine the $\Delta \mathrm{H}^{\circ}{ }_{r x n}$ (in units of $\mathrm{kJ} / \mathrm{mol} \mathrm{NaOH}$) for the neutralization reaction between aqueous NaOH and HCl . Assume 1) that no heat is lost to the calorimeter or the surroundings, and 2) that the density and the heat capacity of the resulting solution are the same as water.
A) $-169 \mathrm{~kJ} / \mathrm{mol} \mathrm{NaOH}$
B) $-34.4 \mathrm{~kJ} / \mathrm{mol} \mathrm{NaOH}$
C) $-27.9 \mathrm{~kJ} / \mathrm{mol} \mathrm{NaOH}$
D) $-55.7 \mathrm{~kJ} / \mathrm{mol} \mathrm{NaOH}$
E) $-16.7 \mathrm{~kJ} / \mathrm{mol} \mathrm{NaOH}$

Answer: D

