1032_3rd Exam_1040527(A)

MULTIPLE CHOICE. Ch	noose the one alternative th	at best completes the s	tatement or answers th	ne question.
1) The L A) Zero	aw of Thermodynamics stat B) First	es the energy is conserv C) Second	ved in chemical process D) Third	ses. E) Fourth
Answer: B				
	arily true for a spontaneous	process?		
A) ΔS _{univers}	_{Se} > 0			
B) $\Delta E > 0$				
C) $q = 0$ D) $\Delta H < 0$				
E) ΔS° _{systen}	n > 0			
Answer: A	•			
3) Calculate the $\Delta 0$	G° _{rxn} using the following ir	nformation.		
	$4 \text{ HNO}_3(g) + 5 \text{ N}_2\text{H}_4(I) \rightarrow$	7 N ₂ (g) + 12 H ₂ O(l)	$\Delta G^{\circ}_{rxn} = ?$	
ΔG°_{f} (kJ/mol)	-73.5 149.3	-237.1		
A) +954.7 kJ				
B) +2.845 x 10	0 ³ kJ			
C) -954.7 kJ				
D) -3.298 x 1	03 kJ			
E) -312.9 kJ				
Answer: D				
4) Calculate ∆G _{rxi}	n at 298 K under the conditi	ons shown below for th	e following reaction.	
(R = 8.314 J·mol	-1. _K -1)			
2 Hg(g)	$O(1) + O_2(g) \rightarrow 2 HgO(s)$	$\Delta G^{\circ} = -180.8 \text{ kJ}$		
P(Hg) =	= 0.025 atm, P(O ₂) = 0.037 a	tm		
A) -164 kJ	B) -154.4 kJ	C) -26.5 kJ	D) +207 kJ	E) +60.7 kJ
Answer: B				
	nic reaction to be nonsponta	neous at high temperat	cures, the enthalpy mus	st be while
the entropy is _				
A) positive, r	•	mamath ra		
B) a relativel C) positive, a	y small negative value, also	negative		
	y large negative value, posi	tive		
	ge negative value, also nega			
Answer: B				

A) Δ	H is positive; \triangle H is positive; \triangle	for the freezing of S is positive; $\triangle G$ S is negative; $\triangle G$	•	ow 0 °C? B) $\triangle H$ is positive; $\triangle S$ is neg D) $\triangle H$ is negative; $\triangle S$ is neg	•
	are not tempera	ature dependent.	_	become spontaneous? Assum $\Delta H = +95.7 \text{ kJ}$; $\Delta S = +142.2 \text{ J/K}$	
	0 nis reaction is no	onspontaneous at ontaneous at all t	•		
Answer	: B				
8) Place th	e following in o	rder of increasing	entropy at 298 K.		
	Ne Xe	He Ar	Kr		
B) Ar C) He D) Ar	e < Ne < Ar <	Ne < Kr Ar < Xe Kr < He			
A) C	$O(g) + Cl_2(g) \rightarrow$	likely to have a positive $COCl_2(g)$ $O(1) \rightarrow 2 HNO_3(f) + 1$	-	B) $SiO_2(s) + 3 C(s) \rightarrow SiC(s) + 3 C(s) + 3 C(s$,
Answer) >2111403(1) +	14O(g)	D) 0 CO2(g) + 0 112O(g) > 0	6111206(3) + 0 02(9)
	-			f the boiling point of ethanol is	5 78.0°C, calculate ΔS
Answer)535	0.500 mol ethanol B) 479	, in J/K. C) 53.5	D) 0.240	E) 107
A) Fe B) 2 I C) 3 (•	$0) \rightarrow 2 \text{ Fe(s)} + 3 \text{ Co}$ 2 HgO(s) $0)$	$\Delta G^{\circ} = -\frac{1}{2}$ $\Delta G^{\circ} = -\frac{1}{2}$ $\Delta G^{\circ} = -\frac{1}{2}$	-180.8 kJ	
Answer	: B				
12) Determ	ne the equilibri	um constant for tl	ne following react	ion at 549 K. (R = 8.314 J·mol-1	·K ⁻¹)
	CH ₂ O(g) + 2 H	$_2(g) \rightarrow CH_4(g) +$	H ₂ O(g) ΔH°	= -94.9 kJ; Δ S°= -224.2 J/K	
A) 1.0)7 x 10 ⁹	B) 1.94 x 10 ⁻¹²	C) 481	D) 2.08 x 10 ⁻³	E) 9.35 x 10-10

Answer: D

13) For a certain reaction, this reaction, in kJ?	, the standard free end	ergy change is -80.0 kJ	at 300 K and -40.0 kJ	at 600 K. What is ΔH for
A) +40	B) -80	C) -40	D) +80	E) -120
Answer: E				
14) Assume enthalpy and		perature dependent. Fo $_2$ (g) + 3 H ₂ (g) \rightarrow 2 N		
$\Delta H^{\circ} = -92.2 \text{ kJ and } \text{K}_{ }$ (R = 8.314 J·mol ⁻¹ ·K ⁻		Calculate the value of	K _p at 225°C.	
A) 7.8 × 10-10 Answer: E	B) 2.1 × 10 ¹²	C) 6.8 × 10 ⁵	D) 1.8 × 10 ²	E) 2.2 × 10-1
15) What element is being	g oxidized in the follo	owing redox reaction?		
MnO ₄ -(aq) +	$H_2C_2O_4(aq) \rightarrow Mn^2$	² +(aq) + CO ₂ (g)		
A) H	В) О	C) C		D) Mn
Answer: C	2, 0	3, 3		_,
A) Mg \rightarrow Mg ²⁺ + B) Cu ⁺ + e ⁻ \rightarrow C C) Pb ²⁺ + e ⁻ \rightarrow F D) Fe ³⁺ + 2e ⁻ \rightarrow E) Ag \rightarrow Ag ⁺ + e Answer: C	u Fe+ e- redox reaction if it o	ccurs in basic solution.	What are the coeffici	ents in front of Cr(OH)4 ⁻
and CIO ⁻ in the balan				
Cr(OH) ₄ ⁻(aq) + CIO ⁻ (aq) \rightarrow CrO ₄	2-(aq) + CI ⁻ (aq)		
A) $Cr(OH)_4^- = 2$, C B) $Cr(OH)_4^- = 1$, C C) $Cr(OH)_4^- = 2$, C D) $Cr(OH)_4^- = 6$, C E) $Cr(OH)_4^- = 1$, C Answer: A	EIO ⁻ = 1 EIO ⁻ = 6 EIO ⁻ = 5			
18) How many electrons	are transferred in the	following reaction?		
6 Br	- (aq) + Cr ₂ O ₇ ² - (ad	$q) + 14 H^+ (aq) \rightarrow 2 CH$	r ³⁺ (aq) + 7 H ₂ O +	3 Br ₂ (I)
A) 1 Answer: D	B) 2	C) 3	D) 6	E) 14

- 19) Identify the location of reduction in an electrochemical cell.
 - A) the cathode
- B) the anode
- C) the salt bridge
- D) the electrolyte

Answer: A

Table A	Selected	Standard	Electrode	Potentials	at 2	25°	C
_							

Read	ction	E°, V
Mg ²⁺ (aq)	$+ 2 e^- \rightarrow Mg (s)$	-2.356
Fe ²⁺ (aq)	$+ 2e^- \rightarrow Fe(s)$	-0.440
Pb ²⁺ (aq)	$+ 2e^- \rightarrow Pb(s)$	-0.125
2 H+ (aq)	$+ 2e^- \rightarrow H_2(g)$	0.0
Cu ²⁺ (aq)	+ 2 e ⁻ → Cu (s)	+0.337
I ₂ (s)	$+ 2e^- \rightarrow 2I^-(s)$	+0.535
Fe ³⁺ (aq)	+ $2 e^- \rightarrow Fe^{2+}$ (aq)	+0.771
Ag+ (aq)	$+ e^- \rightarrow Ag(s)$	+0.800
$O_2(g) + 4 H$	H^+ (aq) + 2 $e^- \rightarrow 2 H_2O$	+1.229
CI ₂ (g)	+ $2 e^- \rightarrow 2 CI^-$ (aq)	+1.358
F ₂ (g)	$+ 2e^- \rightarrow 2F^- (aq)$	+2.866

- 20) (Refer to Table A) Which of the following is the best oxidizing agent?
 - A) Mq^{2+}
- B) Fe³⁺
- C) Cu²⁺
- D) F-
- E) Cl₂

Answer: E

21) (Refer to Table A) Calculate the standard cell potential for the following balanced reaction occurring in an electrochemical cell at 25°C.

$$Mg(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Mg^{2+}(aq)$$

- A) -2.693 V
- B) -2.019 V
- C) +2.019 V
- D) +1.362 V
- E) +2.693 V

Answer: E

22) (Refer to Table A) Calculate ΔG° for the following balanced redox reaction at 25°C. (1 F = 96485 C/mol e⁻, 1 V = 1 J/C)

$$Mg(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Mg^{2+}(aq)$$

- A) +520 kJ
- B) -2.3 kJ
- C) -78 kJ
- D) +2.3 kJ
- E) -520 kJ

Answer: E

23) (Refer to Table A) Calculate the equilibrium constant (K) for the following balanced redox reaction at 25°C.

$$Mg(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Mg^{2+}(aq)$$

- A) 9.54×10^{-90}

- B) 8.9×10^{18} C) 9.54×10^{90} D) 8.9×10^{-18}
- E) 1.7 × 10²⁹

Answer: C

24) (Refer		culate the cel	II potential fo	or the foll	owing reactior	n that tak	es place in an e	lectroch	emical
Mg(s) Mg ²⁺ (aq, 2.74 M) \parallel Cu ²⁺ (aq, 0.0033 M) Cu(s)									
A) + Answe	3.71 V r: B	B) +2.61	V	C) -2.6	1 V	D) +2.1	2 V	E) -2.1	2 V
transfe	of the following for those reactions: $A \mapsto C$; E°_{Ce}	tions are sam		ne smalle:			(Assume the nu $^{\circ}$ CeII = +0.98 V	ımber of	electron
C) A	$+ B \rightarrow 3 C; E^{\circ}$	_{cell} = +0.15 V	1		D) A + B -	→ 2 C; E	°ceII = -0.030 \	1	
Answe	r: D								
A) li B) n C) h D) n	y the componer thium ion ickel-metal hyd ydrogen-oxygo ickel-cadmium nc-manganeso r: C	dride en 1	ell.						
A) c B) v C) h D) u	ne how water can ill the water aporize the water se pure water dd salt		conductor of	f current.					
28) What r	nass of aluminu	um can be pla	ated onto an	object in	755 minutes at	t 5.80 A c	of current?		
	6485 C/mol e-, 3.5 g r: C				g	D) 8.17	g	E) 220.	g
29) What is	s the coordinati	on number a	and oxidation	n state of t	the central ato	m in [Fe	(CN)4 14-7		
A) 6 Answe	+2		+3	C) 3	+2	D) 3	-4	E) 6	-4
A) P B) A C) C D) T	statement rega ositive ions ma II ligands are r only one atom o he atom bondii II ligands are L r: E	ke good ligar negative ions. of the ligand on ng to the met	nds. can bond to t						
31) Which A) N Answe		g elements w B) Fe	vould have fi	ve unpaiı C) Cr	red electrons ii	n atomic D) Co	form?	E) V	

32) What is the ground sta A) [Ar] 4s ² 4d ⁶	ite electron configurat B) [Ar] 4d ⁸	ion of Ni ²⁺ ? C) [Ar] 3d ⁸	D) [Ar] 4s ² 3d ⁶	E) [Ar] 3d ¹⁰
Answer: C	5) [/ 11] 13	o, [,] oa	<i>D</i>) [, 11] 15 Gd	2) [/ 11] 00
E) nickel(III)chlorid	otriamminechloride netrihydrochloride anickel(II)chloride)triamminetrihydride			
Answer: C				
34) Which is the correct ch A) K ₂ [Fe(CN) ₆] B) K [Fe(CN) ₆] C) K ₆ Fe(CN) ₆] D) K ₄ [Fe(CN) ₆] E) K [FeCN] ₆	nemical formula for po	otassium hexacyanoferr	rate (II)?	
Answer: D				
35) Which of the following A) [Fe(CO) ₅ NO ₂] ²⁺ B) [Ni(CO) ₂ (NH ₃) ₂ C) [MnClBr ₃] ²⁻ D) [Cr(H ₂ O) ₆] ³⁺ E) [Cu(CO) ₅ Cl] ⁺ Answer: B	+	bit cis-trans isomerism	n?	
36) Which of the following A) [Co (NH ₃) ₄ Cl ₂] B) [Cr (NH ₃) ₆] ³⁺ C) [Pt (NH ₃) ₃ Br] ⁺ D) [Pt (CN) ₂ Cl ₂] ²⁻ E) [Co (en) ₃] ³⁺ Answer: E	+	cal isomerism?		
37) The complex ion, [Ni(I energy (in kJ/mol) for		mum absorption near 5 tant h = $6.626 \times 10^{-34} \text{ J}$	_	ystal field splitting
A) 343 kJ/mol Answer: C	B) 485 kJ/mol	C) 206 kJ/mol	D) 292 kJ/mol	E) 114 kJ/mol
38) Which element forms - A) V Answer: D	+2 ions that are diama B) Ti	gnetic and colorless in C) Cr	solution? D) Zn	E) Mn

39) Given the spectroche	mical series (increasing Δ), CI ⁻ <	H_2O < NH_3 < CN^- , wh	iich of the following species
would absorb light of	f the shortest wavelength?		
A) $[Co (H_2O)_6]^{3+}$			
B) [Co (NH ₃) ₆] ³⁺			
C) [Co (NH ₃) ₅ CI]2+		
D) [CoCl ₆] ³⁻			
E) [Co (CN) ₆] ³ -			
Answer: E			
40) The complex ion [Ni	(Br) ₄] ²⁻ is found to have two unp	aired electrons. Use crysta	I field theory to deduce what
geometry is consister	nt with this observation. (Br- is a v	weak field ligand.)	
A) linear	B) square planar	C) octahedral	D) tetrahedral
Answer: D			