1012_1st Exam_1020320

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) What is the main difference between a Pt catalyst and an enzyme catalyst?

- A) A Pt catalyst is always a homogeneous catalyst.
- B) The enzyme causes a faster reaction.
- C) The Pt catalyst causes a faster reaction.
- D) An enzyme has greater substrate specificity.
- E) A Pt catalyst is an enzyme.

Answer: D

2) If increasing the concentration of A in a chemical reaction causes no increase in the rate of the reaction, then we may say:

A) A is a catalyst

- B) the reaction rate is second order in [A]
- C) the reaction rate is zero order in [A]
- D) the reaction rate is first order in [A]
- E) A is not involved in the reaction

Answer: C

3) A factor that decreases the activation energy for a reaction:

- I) decreases the rate constant
- II) increases the rate constant
- III) has no effect on the rate constant
- IV) makes the product yield increase
- V) might be a catalyst

A) I, IV, and V B) II and IV C) II and V D) IV and III E) I and IV Answer: C

4) For the second order reaction $A \rightarrow$ products, the following data are obtained:

[A] = 1.512 M, <i>t</i> = 0 min
[A] = 1.490 M, <i>t</i> = 1.0 min
[A] = 1.469 M, <i>t</i> = 2.0 min

What is the concent	tration of [A] in the exp	eriment after 4.0 min fo	or the reaction?	
A) 1.61 M	B) 1.43 M	C) 1.37 M	D) 1.40 M	E) 1.35 M
Answer: B				

5) In a second order reaction:

I) the sum of the exponents in the rate law is equal to two.

- II) at least one of the exponents in the rate law is a two.
- III) the half-life is not constant.
- IV) the half-life is constant.
- V) k can be expressed as M-2s-1 or M-2min-1.A) II and IVB) I and IIIC) II and IIIC) II and IIID) I, III, and VE) I and IV

Answer: B

6) Given that the equilibrium concentrations of $[N_2] = 0.035 \text{ M}$, $[C_2H_2] = 0.057 \text{ M}$, and $[HCN] = 6.8 \times 10^{-4} \text{ M}$, find the value of the equilibrium constant expression for the reaction:

 $\begin{array}{c} N_2(g) + C_2H_2(g) \rightleftharpoons 2 \ \text{HCN} \\ \text{A) 4300} \qquad \text{B) } 2.3 \times 10^{-4} \qquad \text{C) } 3.4 \times 10^{-1} \qquad \text{D) } 6.8 \times 10^{-1} \qquad \text{E) } 2.9 \\ \text{Answer: B} \end{array}$

7) What is the [HPO₄-2] of a solution labeled "0.10 M Phosphoric Acid"?

 $[K_{a1} = 7.1 \times 10^{-3}; K_{a2} = 6.3 \times 10^{-8}; K_{a3} = 4.2 \times 10^{-13}]$ A) 4.2×10^{-13} M B) 1.6×10^{-9} M C) 1.6×10^{-16} M D) 6.3×10^{-8} M E) 7.1×10^{-3} M

Answer: D

8) The rate constant for a first-order reaction is $k = 0.00073 \text{ s}^{-1}$. Determine the percent of reactant that has decomposed after 500 s.

A) 31%	B) 69%	C) 37%	D) 43%	E) 57%
Answer: A				

9) For the reaction: $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ concentration-time data are:

t(s)	[NO ₂]	In[NO ₂]	1 [NO2]
0.00	2.000	0.300	0.500
0.40	1.467	0.166	0.682
0.80	1.076	0.032	0.929
1.20	0.789	-0.103	1.267
1.60	0.579	-0.237	1.727
2.00	0.424	-0.373	2.358

What is the order of the reaction with res	pect to [NO2]?
--	----------------

A) first	B) third	C) second	D) zero	E) 2 + 2
Answer: A				

10) Write the equilibrium constant expression for the following reaction:

$$6 \text{ CO}_2(\text{g}) + 6 \text{ H}_2\text{O}(\text{I}) \rightleftharpoons \text{C}_6\text{H}_{12}\text{O}_6(\text{s}) + 6 \text{ O}_2(\text{g})$$
A) $K_{\text{C}} = \frac{[\text{O}_2]^6}{[\text{CO}_2]^6}$
B) $K_{\text{C}} = \frac{[\text{C}_6\text{H}_{12}\text{O}_6]}{[\text{H}_2\text{O}]^6[\text{CO}_2]^6}$
C) $K_{\text{C}} = \frac{[\text{CO}_2]^6}{[\text{C}_6\text{H}_{12}\text{O}_6]}$
D) $K_{\text{C}} = \frac{[\text{CO}_2]^6[\text{H}_2\text{O}]^6}{[\text{O}_2]^6}$
E) $K_{\text{C}} = \frac{[\text{O}_2]}{[\text{CO}_2]}$

Answer: A

11) Choose the INCORRECT statement.

- A) A reversible chemical reaction is one in which equilibrium is never established due to the constant decomposition of the products.
- B) When the rate of the reverse reaction equals the rate of the forward reaction, equilibrium has been established.
- C) Chemical equilibrium is a dynamic equilibrium.
- D) A certain amount of energy, called the activation energy, must be available if a reaction is to take place.
- E) Changes in temperature will change the value of an equilibrium constant.

Answer: A

12) What is the pH of	a 0.475 M solution of so	odium nitrite? Ka (nitro	us acid) = 7.2 × 10 ⁻⁴	
A) 5.59	B) 8.58	C) 12.27	D) 8.41	E) 5.42
Answer: D				

13) 0.75 mol of N₂ and 1.20 mol of H₂ are placed in a 3.0 liter container. When the reaction

N₂(g) + 3H₂(g) \rightleftharpoons 2 NH₃(g) reaches equilibrium, [H₂] = 0.100 M. Which of the following is true? A) [NH₃] = 0.150 M

A) $[N \square 3] = 0.1501$

- B) $[NH_3] = 0.200$
- C) [N₂] = 0.650 M
- D) [N₂] = 0.250
- E) [NH₃] = [H₂] = 0.05 M

Answer: B

14) Equilibrium constant *K* is constant except when one varies the:

- A) concentration of the products
- B) temperature of the reaction
- C) concentrations of the reactants
- D) partial pressures of the reactants
- E) K always remains constant

Answer: B

15) Choose the INCORRECT statement.

A) The rate-determining step is always the first step.

B) An elementary process is a step in the mechanism.

C) A bimolecular process is one involving a collision of two molecules.

D) A unimolecular process is one in which a single molecule dissociates.

E) A reaction mechanism is a step-by-step detailed description of a chemical reaction.

Answer: A

16) List the following acids in order of increasing strength:

H3PO4 H2SO4 HCIO4 A) HCIO4 < H3PO4 < H2SO4 B) H2SO4 < H3PO4 < HCIO4 C) HCIO4 < H2SO4 < HCIO4 D) H3PO4 < H2SO4 < HCIO4 E) H2SO4 < HCIO4 < H3PO4

Answer: D

17) Consider the following reversible reaction:

 $POCI_3(g) \Rightarrow POCI(g) + CI_2(g)$ $K_C = 0.450$

The following initial amounts of reactants and products were mixed: $[POCI_3] = 0.750 \text{ M}$, [POCI] = 0.550 M, and $[CI_2] = 0.150 \text{ M}$. What is the equilibrium concentration of POCI?

- A) 0.360 M B) 0.395 M C) 0.155 M D) 0.945 M E) 0.740 M Answer: E
- 18) In the reaction C₄H₉Cl(aq) + H₂O(l) \rightarrow C₄H₉OH(aq) + HCl(aq) the concentration of the reactant changes from 0.0562 M to 0.0431 M in 85 sec. What is the average rate of decomposition over this interval?
 - A) 0.0154 M
 - B) 1.54 × 10-4 M/s C) 1.54 × 10-4 moles/s
 - C) 1.54×10^{-4} ff
 - D) 0.0154 M/sE) 1.54 × 10⁻⁴ moles

Answer: B

19) List the following acids in order of increasing strength:

	HBrO	HIO	HCIO
A) I	HCIO < HIO) < HBrO	
B) I	HCIO< HBr	OIH > C	
C) I	HBrO < HIC) < HCIO	
D) I	HIO < HBrO	< HCIO	
E) I	HIO < HCIO	< HBrO	
Answ	er: D		

20) If one mole of Ba(OH)₂ is added to enough water to make 10 liters of solution, the pH of the resulting solution is

A) 13.0	B) 1.0	C) 12.5	D) 0.7	E) 13.3
Answer: E				

21) CO₂ acts as an acid in the reaction CaO(s) + CO₂ \Rightarrow CaCO₃(s) because it _____

A) reacts with a metal

- B) is a proton donor
- C) is an electron-pair acceptor
- D) turns blue litmus red
- E) is a gas containing a non-metal

Answer: C

22) Choose the Brønsted-Lowry acids and bases in the following equation:

```
HSO_4^- + C_2H_3O_2^- \rightleftharpoons HC_2H_3O_2 + SO_4^{2-}
A) acids SO_4^{2-}, C_2H_3O_2^- bases HSO_4^-, HC_2H_3O_2

B) acids SO_4^{2-}, HC_2H_3O_2 bases HSO_4^-, C_2H_3O_2^-

C) acids HSO_4^-, C_2H_3O_2^- bases HC_2H_3O_2, SO_4^{2-}

D) acids HSO_4^-, SO_4^{2-} bases HC_2H_3O_2, C_2H_3O_2^-

E) acids HSO_4^-, HC_2H_3O_2 bases SO_4^{2-}, C_2H_3O_2^-
```

Answer: E

23) For the following compound, predict whether the solution is acidic, basic or neutral and why:

A) basic because NH4Cl is the salt of a weak acid

- B) basic because NH4CI is a weak base
- C) acidic because NH4Cl is a strong acid
- D) acidic because NH4CI is the salt of a weak base
- E) neutral because there is no hydrolysis

Answer: D

24) A solution has pOH of -0.47. This means that:

- A) the solution has a pH of 13.53
- B) the solution has an [OH-] = 0.34 M
- C) The solution has an $[H^+] = 2.95 \text{ M}$
- D) the solution has an [OH-] = 2.95 M

E) the solution has an [OH-] greater than 10.0 M

Answer: D

25) In the reaction BF₃ + NH₃ \Rightarrow F₃B:NH₃, BF₃ acts as:

- A) a Lewis base
- B) an Arrhenius acid
- C) an Arrhenius base
- D) a Lewis acid
- E) a Brønsted acid

```
Answer: D
```

26) Which of the following situations involves a heterogeneous catalysis?

- A) The catalyst is in two different phases of matter.
- B) The catalyst changes phases during the reaction.
- C) The catalyst is present in a different phase of matter than are the reactants and products.
- D) The reactants and products are different phases of matter in a catalyzed reaction.
- E) The catalyst, reactants, and products are all different phases of matter.

Answer: C

27)	Data for the reaction A	$A + B \rightarrow C$ are of	given below. Fir	nd the rate constant	for this system.
					,

	Experiment	[A], M	[B], M	Initial rate, M/s	
	1	0.030	0.060	2.5 × 10-5	
	2	0.030	0.020	2.5 × 10 ⁻⁵	
	3	0.060	0.060	10.0 × 10-5	
A) 2	2.8 × 10-2 Ms-1				
B) 1	1.7 × 10-3 Ms-1				
C) 2	2.8 × 10-2 M-1 _S -1				
D) 1	1.7 × 10-3 M-1s-1				
E) 2	2.8 × 10-2 M2s-1				
Answe	er: C				
28) In the	following reversible r HCO3-(aq) + OH-(reaction the Br ϕ (aq) \rightleftharpoons CO3 ² -(a	nsted acids are _ aq) + H2O		
A) ł	HCO3- and H2O				
B) ł	HCO3- and CO32-				
C) (OH- and H ₂ O				
D) (OH- and CO ₃ 2-				
E) I	H_2O and CO_3^2 -				
Answe	er: A				
29) Consid	der the following read 2SO ₃ (g) \Rightarrow 2SO ₂ (g)	tion at a certain) + O2(g)	temperature.		
When be 0.0 ²	the initial concentrati 130 M. Calculate K _C fo	on of SO ₃ (g) is or this reaction.	0.128 M, the con	centration of oxygen gas at	equilibrium is found to
A) 1	I.47 x 10− ³	B) 8.45 x 10	- 4	C) 7.64 x 10 ⁻⁵	D) 1.62 x 10 ⁻²
Answe	er: B				
30) For the A) 1 B) 1 C) 1 D) 1 E) 1 Answe	e reaction: 3 Fe(s) + 4 Fhere is no change. Fhe reaction shifts to t Fhe K _p is decreased. Fhe K _p is doubled. Fhe reaction shifts to t er: A	H2O(g) ⇔ Fe3(he right. he left.	D4(s) + 4 H2(g) v	vhat is the effect of adding I	Fe(s)?
31) In the	Arrhenius equation, I	$n k = -E_a/RT + 1$	In A, the symbol	A denotes:	
A) a C B) t C) t	a constant that represe conditions favorable fo he absolute temperati he initial concentratic	ents the frequen or a reaction ure on of A	cy of collisions v	vith the proper orientation a	and other steric

- D) the activation energyE) the rate constant

Answer: A

32) For the reaction: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ at the time when N_2O_5 is being consumed at a rate of -1.2×10^{-4} M/s, what is the rate at which O₂ is being formed?

A) 4.8 × 10-4 M/s
B) 2.4 × 10-4 M/s
C) 6.0 × 10-5 M/s
D) 1.2 × 10-4 M/s
E) 3.0 × 10-5 M/s

Answer: C

33) 0.375 g of a monoprotic acid (mm = 245 g/mol) is dissolved in water to produce 25.0 mL of a solution with pH = 3.28. Determine the ionization constant of the acid.

A) 2.3 × 10⁻² B) 4.5 × 10⁻³ C) 4.5 × 10⁻⁶ D) 8.56 × 10⁻³ E) 7.4 × 10⁻⁵ Answer: C

34) For the reaction: $C_2H_4Br_2 + 3KI \rightarrow C_2H_4 + 2KBr + KI_3$ Initial rate data at 60°C are:

[C2H4Br2], M	[KI], M	Δ [KI3]/ Δ t (M min)
0.500	1.80	0.269
0.500	7.20	1.08
1.50	1.80	0.807

The rate law is _____.

A) rate = k[C₂H₄Br₂]

B) rate = *k*[KI]

C) rate = $k[KI][C_2H_4Br_2]^2$

D) rate = k[KI]²

E) rate = $k[KI][C_2H_4Br_2]$

Answer: E

35) Which species in the following reaction acts as a Lewis acid?

 $CuSO_4(s) + 4NH_3(aq) \rightleftharpoons [Cu(NH_3)_4]^{2+}(aq) + SO_4^{2-}(aq)$

A) NH3

B) SO42-

C) [Cu(NH3)4]²⁺(aq)

D) Cu2+

```
E) [Cu(NH_3)_4]^{2+}(aq) and SO_4^{2-}
```

Answer: D

- 36) Which of the following statements is true about the reaction 2A → B + C which is first order in A and first order overall?
 - A) The rate of formation of C is twice the rate of reaction of A.
 - B) The rate of the reaction will decrease at higher concentrations of B and C.
 - C) The time required for one half of A to react is directly proportional to the quantity of A.
 - D) The rate of formation of B is the same as the rate of reaction of A.
 - E) The initial rate doubles with doubling of initial concentration of A.

Answer: E

37) A saturated aqueous solution of calcium hydroxide has a pH of 12.25. What is the [Ca²⁺] of such a solution? A) 5.6 × 10-13 B) 0.018 C) 8.9 × 10-3 D) 2.3 × 10-5 E) 0.035 Answer: C 38) Which of the following has no effect on the rate of a reaction? A) activation energy B) presence of a catalyst C) temperature of reactants D) value of ΔH° E) concentrations of reactants Answer: D 39) Consider the following reaction. $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$ At equilibrium at a certain temperature, $[H_2O(g)] = 0.12$ M, and $[CO(g)] = [H_2(g)] = 1.2$ M. If suddenly these concentrations are increased by 0.50 M, which of the following is true? A) $K_{C} = 4.66$ B) Since K_C does not change, nothing happens. C) more products are formed D) more $H_2O(g)$ will be formed Answer: C 40) For the reaction: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ the rate law is: $\frac{\Delta[O_2]}{\Delta t} = k[N_2O_5]$ At 300 K, the half-life is 2.50 × 104 seconds and the activation energy is 103.3 kJ/mol. What is the half-life at 310 K? A) 9.51 × 104 s B) 6.57 × 10³ s C) 2.49 × 104 s D) 9.51 × 106 s E) 1.87× 10-1 s Answer: B 41) Calculate rate constant k for a first order reaction with a half-life of 75.0 min. A) 1.33 × 10-2 min-1 B) 9.24 × 10-3 min-1 C) 2.67 × 10-2 min-1 D) 52.0 min-1 E) 1.54 × 10-4 min-1 Answer: B 42) For 2 NO₂(g) \Rightarrow N₂O₄(g), K_c = [N₂O₄]/[NO₂]². At equilibrium there are 0.0270 mol N₂O₄ and 0.450 mol NO₂ in a 50.0-L container. What is $K_{\rm C}$? A) 0.133 B) 6.81 C) 0.00267 D) 6.67 E) 2.45 Answer: D

 43) In the equilibrium sy theory would design A) PO4³- as amplication 	/stem described by nate: hiprotic	r: PO4 ³ -(aq) + H2O(I) =	≐ HPO4 ² -(aq) + OH-(a	aq) Brønsted-Lowry
B) H2O and OH-	as a conjugate pai	r		
C) HPO $_{4}2$ - and C)H- as the acids			
D) PO_43 - and Ha	\cap as the bases			
E) HPO $_4^2$ and H	dan as a conjugate	nair		
Answer: B		pan		
44) Consider the reaction $CH_4(a) + 4$	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$		nol	
The equilibrium is d	$s_{12}(g) \leftarrow c_{14}(f) + c_{12}(g)$	$-4 \Pi C (g) \Delta H = 370 Km$		
A) some carbon te	strachloride is remo	oved		
B) the pressure is	lowered			
C) the temperatur	e is raised			
D) some hydroger	h chloride is added	1		
	yas is removed			
Answer: A				
45) What is the pH of a ().375 M solution of	f benzoic acid? Ka = 6.3 x	× 10-5	
A) 8.9	B) 11.7	C) 5.1	D) 2.3	E) 0.43
Answer: D				
46) For the reaction: 3 Fe(s) + 4 H	I2O(g) ⇒ Fe3O4(s)) + 4 H2(g)		
write the expression	for <i>K</i> p.			
A) [Fe3O4][H2]				
[Fe][H2O]				
B) [Fe ₃ O ₄] P(H ₂) [Fe] P(H ₂ O)				
$(P(H_2)^4)$				
P(H ₂ O) ⁴				
D) [Fe3O4][H2] ⁴ [Fe][H2O] ⁴				
P(H ₂)				
$E) \frac{-}{P(H_2O)}$				
Answer: C				

47) For the following chemical equilibrium, $K_p = 4.6 \times 10^{-14}$ at 25°C, find the value of K_c for this reaction at 25°C. R = 0.0831 bar L / K mol

 $2 \operatorname{CI}_2(g) + 2 \operatorname{H}_2O(g) \rightleftharpoons 4 \operatorname{HCI}(g) + O_2(g)$

A) *K*_C = 1.1 × 10-12

B) *K*_C = 2.2 × 10-14

- C) $K_{\rm C} = 4.6 \times 10^{-14}$
- D) $K_{\rm C} = 9.4 \times 10^{-14}$
- E) K_C = 1.9 × 10-15

Answer: E

48) For the reaction: $CH_4(g) + 2H_2O(g) \Rightarrow CO_2(g) + 4H_2(g) \Delta H^\circ = +190 \text{ kJ add } H_2(g)$:

- A) the reaction reacts to the left
- B) the reaction reacts to the right
- C) the ΔH° increases
- D) the temperature increases
- E) there is no change in equilibrium position

Answer: A

49) For the reaction CO(g) + 3 H₂(g) \rightleftharpoons H₂O(g) + CH₄(g), K_c = 190 at 1000 K. If a vessel is filled with these gases such that the initial concentrations are [CO] = 0.036 M, [H₂] = 0.045, [H₂O] = 0.020, and [CH₄] = 0.031, in which direction will a reaction occur and why?

- A) toward products because Q/Kc = 4.1
- B) toward products because Q/Kc = 0.38
- C) toward reactants because Q/Kc = 61
- D) toward reactants because Q/Kc = 0.24
- E) it is at equilibrium because Q/Kc = 1

Answer: E

50) A saturated aqueous solution of calcium hydroxide is approximately 0.13% calcium hydroxide, by mass, and has a density of 1.02 g ml⁻¹. What is the pH of such a solution?

A) 12.25	B) 12.75	C) 13.00	D) 12.55	E) 11.95
Answer: D				